A Collaborative Process to Identify the Most Feasible Aquifer Recharge Sites in Oklahoma

Nathan T. Smith, CDM

WaterEnergy 2010
Senate Bill 1410

- Oklahoma Senate Bill 1410 – passed on Earth Day 2008
 - Using artificial recharge (AR) to help increase the State’s available water supplies through collaboration and consensus building

- CDM’s involvement
 - CDM was initiating a revision to the Oklahoma Comprehensive Water Plan (OCWP)
 - OCWP assessed supply and demand statewide
 - CDM contracted to lead collaborative effort to identify AR sites
Western Water Woes

- Western population growth
- Frequent droughts
- Overuse of surface and groundwater
- Of concern primarily in western OK

Photo credit: NOAA; http://www.noaanews.noaa.gov/stories2008/20081007_tools.html
Disadvantages of Normal Water Supplies

- **Rivers/streams**
 - *Water rights limit additional usage of supplies*
 - *Upstream and senior rights get priority*

- **Reservoirs**
 - *Land usage/availability*
 - *Environmental impact*

- **Groundwater**
 - *Demand often exceeds recharge/supply*
 - *Rapidly declining groundwater elevations in many areas*
Perfect Alternative: Artificial Recharge

- Injection of surface water into aquifers
- Uses “unfilled” aquifers
 - Unconfined aquifers – unsaturated matrix
 - Confined aquifers – raise potentiometric surface/ increase pressure
- Recharge water through infiltration or active injection
- Storage for months or years

Photo credit: http://www.cap-az.com/operations/recharge/aguafria/
Perfect Alternative: Artificial Recharge

• Benefits
 • *Utilize excess surface water*
 • Spring runoff
 • Storm events
 • Treated effluent
 • *Potential minimization of area requirement*
 • *Infrastructure often in place*
 • *Limit evaporative losses*
Senate Bill 1410

- CDM to lead collaborative work group in evaluation of AR
- American Water Institute (AWI) to complete preliminary screening
- Collaborative:
 - Meetings
 - Reviews/Feedback
 - Guidance
 - Data sources
 - Site information
Involved Parties

- OWRB
- Ok. Department of Environmental Quality
- Ok. Geologic Survey
- USBR
- USGS
- USEPA
- American Water Institute (AWI)
- Chickasaw Nation
- Ok. Corporation Commission
- University of Oklahoma
- Ok. Climatological Survey
- NOAA, National Severe Storms Laboratory
- Ok. Conservation Commission
- State Senator Susan Paddock
Previous AR Studies

- USBR Draft Planning Framework for Artificial Recharge (USBR 2008)
- National Academy of Sciences Water Science and Technology Board’s Prospects for Managed Underground Storage of Recoverable Water (WTSB 2008)
- American Society of Civil Engineers Managed Aquifer Recharge Standards (ASCE 2001)
- Colorado Senate Bill 06-193 Underground Water Storage Study (CDM 2007)
SB1410 Overall Process and Desired Product

- **Phase 1:** Identification of most suitable area(s)
 - 1: Develop Site Evaluation Methods
 - 2: Preliminary Screening of Potential Sites
 - 3: Detailed Evaluation of Potential Sites
 - 4: Reporting and Coordination

- **Phase 2:** Demonstration project(s) at one or more areas from Phase 1

- Work group identification of key criteria:
 - *Short-term/seasonal for quick success*
 - *Sufficient storage capacity*
 - *Water quality concerns*
 - *Demand*
Conceptual Overview of Screening Process

Potential Sites
- All Possibilities
- Candidate Basins

Criteria
- Fatal Flaw (3)
- Threshold Criteria (4)

Detailed Analysis
- 10–15 Candidate Areas

Weighted Scoring Matrix
- All Criteria (11)

Most Suitable Areas
Preliminary Screening - AWI

Data Compilation
- Aquifer Delineation
- Groundwater Quality
- Basin-Level Source Water Surplus
- Basin-Level Water Demand Shortage

Fatal Flaw Screen

Candidate Basins

Preliminary Screening

Aquifer Characteristics
- Available Storage Volume
- Permeability
Source Water Quality
- Suitability for Use
Recharged Water Residence Time Potential

10–15 Candidate Areas
Preliminary Screening - AWI

- Preliminary Screening started with 57 sites based on aquifer-surface water basin pairings and known areas of demand
- After Fatal Flaw, 30 sites remained
- After Threshold Screening, 15 sites remained and were passed on to the detailed screening
Detailed Ranking and Scoring - CDM

- Evaluation of each of the criteria identified in the “kick-off” Tech Memo and refined through Workgroup participation
- Several criteria used in fatal flaw and threshold were reviewed in more detail
 - Availability of source water at probable diversion point rather than basin-wide
 - More detailed water quality assessment
 - Depth to water maps generated for available storage capacity evaluation
Detailed Analysis

- Demand Proximity
- Proximity & Quality of Source Water
- Groundwater Quality
- Storage Volume
- Hydrogeologic Analysis
- Existing Infrastructure

Weighted Scoring Matrix

Selected Areas
Detailed Ranking Maps

- Vicinity Map shows well locations, source location, demand density

- Depth to water map used to assess available storage capacity
Detailed Scoring

- Water Quality data from USGS and EPA online databases at nearby locations, summarized for each site

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>EPA RQL</th>
<th>Groundwater</th>
<th>Streams/Reefal Flats</th>
<th>Gage # 92337509</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium</td>
<td>μg/L</td>
<td>4</td>
<td>2.0</td>
<td>19</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>μg/L</td>
<td>5</td>
<td>2.0</td>
<td>15</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>250**</td>
<td>7</td>
<td>13</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>mg/L</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>μg/L</td>
<td>100</td>
<td>0</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>cfu/100 ml</td>
<td>100</td>
<td>0</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>13000</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>μg/L</td>
<td>300</td>
<td>0</td>
<td>15</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>μg/L</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>μg/L</td>
<td>50</td>
<td>1</td>
<td>3</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>μg/L</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Nitrate / Nitrite-Nitrate</td>
<td>mg/L</td>
<td>10</td>
<td>0.08</td>
<td>0.05</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Langelier Index used to compare chemistry
- Glover Equation used for residence time calculations
- Transmissivity and storativity data from several sources including AWI 2010
- Little difference in ranges between alluvial and bedrock T values
Detailed Ranking Maps

- Water quality sampling locations mapped to help WQ assessment

- GW contours, aquifer footprint used for residence time analysis
<table>
<thead>
<tr>
<th>Site</th>
<th>Source Availability</th>
<th>Demand Proximity</th>
<th>Source Proximity</th>
<th>Available Storage Volume</th>
<th>Demand Density</th>
<th>Source Water Quality</th>
<th>Native GW Quality</th>
<th>Geochemical Interactions</th>
<th>Transmissivity</th>
<th>Residence Time</th>
<th>Cost - O&M</th>
<th>Cost - Capital</th>
<th>Qualitative Considerations</th>
<th>Weighted Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>42</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>19</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>15</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>30</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>28</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>31</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>21</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>27</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>40</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>0.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Recommended Sites for Pilot Project

Potential Recharge Sites
that passed the "Threshold" criteria
Recommended Pilot Project Sites

• Common Criteria
 • Good groundwater and source water quality, compatible water chemistry
 • Public water supply wells in vicinity
 • Potential diversion points within 1 mile
 • Favorable hydrogeology (transmissivity, storage)
 • Pre-treatment likely not required

• Pilot Project
Site 12 - Ada

- Blue River provides source – minimal MCL exceedences, and low TDS
- Nearby PWS wells
- Karst aquifer
- Similar Langelier indices for source and groundwater
- Would require pipeline to convey water to project site
Site 42 - Eakly

- Lake Creek provides source – limited WQ data, but minimal MCL exceedences and low TDS in nearby creek
- Nearby PWS wells
- Project could meet entire town’s demand
- Would require pipeline to convey water to project site
Site 19 - Woodward

- North Canadian River provides source – minimal MCL exceedences, but higher TDS (pre-treatment?)
- Nearby PWS wells
- Alluvial aquifer – spreading basin use
- Would require pipeline to convey water to project site
Thanks to:

- Matt Bliss, Mike Smith, John Rehring, Rebecca Farmer, Dan Reisinger, Mike Lamar (CDM); Wayne Kellogg (AWI)
- OWRB
- Susan Paddock
- Work group members

Questions?
Email: smithnt@cdm.com
Detailed Ranking Methods

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Factors for High Score</th>
<th>Factors for Moderate Score</th>
<th>Factors for Low Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Proximity (distance from recharge area)</td>
<td>Within 1 mile</td>
<td>Approximately 1.5 miles</td>
<td>Greater than 2 miles</td>
</tr>
<tr>
<td>Source Availability</td>
<td>Sufficient available water year-round for project with recent data</td>
<td>Sufficient available water for project during part of year. Older or more distant gage dagt</td>
<td>Sufficient water not available at proposed point of diversion.</td>
</tr>
<tr>
<td>Source Proximity (distance from recharge area)</td>
<td>Within 1 mile</td>
<td>Approximately 1.5 miles</td>
<td>Greater than 2 miles</td>
</tr>
<tr>
<td>Available Freeboard and Ability to Meet Demand</td>
<td>Plentiful volume for meeting the associated demand; no areas will raise water level to less than 15 feet bgs</td>
<td>N/A</td>
<td>Not enough volume to meet the associated demand; may raise the water level to less than 15 feet</td>
</tr>
<tr>
<td>Demand Density (number of wells)</td>
<td>Greater than 10 PWS wells within 1 mile</td>
<td>5 to 10 PWS wells within 1 mile</td>
<td>Less than 5 PWS wells within 1 mile</td>
</tr>
</tbody>
</table>
Detailed Ranking Methods

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Factors for High Score</th>
<th>Factors for Moderate Score</th>
<th>Factors for Low Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Quality for Non-degradation</td>
<td>Similar concentrations as groundwater or lower concentrations that will improve groundwater; no MCL exceedences; low TDS</td>
<td>Borderline TDS; few exceedences of MCLs</td>
<td>Quality will degrade groundwater; high TDS; many MCL exceedences</td>
</tr>
<tr>
<td>Native Groundwater Quality</td>
<td>Low TDS (<500 mg/L); no exceedences of MCLs</td>
<td>Borderline TDS; few exceedences of MCLs</td>
<td>High TDS (>500 mg/L); many exceedences of MCLs</td>
</tr>
<tr>
<td>Geochemical Interactions of Source and Groundwater</td>
<td>Similar Langelier Indices (source and groundwater within 0.5 units); similar pH values</td>
<td>Langelier index unable to be computed, but similar pH and hardness values</td>
<td>Langelier indices that are greater than 0.5 units different; largely different pH or hardness values</td>
</tr>
<tr>
<td>Transmissivity</td>
<td>T>1,000 ft²/d</td>
<td>T>500 ft²/d, but less than 1,000 ft²/d</td>
<td>T<500 ft²/d</td>
</tr>
<tr>
<td>Residence Time</td>
<td>Less than 10% loss in 180 days, >480 days to 25% loss</td>
<td>10 to 25% loss in 180 days, 180 to 480 days to 25% loss</td>
<td>>25% loss in 180 days</td>
</tr>
</tbody>
</table>
Detailed Ranking Methods

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Factors for High Score</th>
<th>Factors for Moderate Score</th>
<th>Factors for Low Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (O&M)</td>
<td>No pretreatment required; gravity flow delivery; spreading basin use</td>
<td>Pretreatment required; ASR wells utilized; force mains required</td>
<td></td>
</tr>
<tr>
<td>Cost (capital)</td>
<td>Gravity flow delivery; ASR well retrofit</td>
<td>Spreading basin in rural area</td>
<td>Spreading basin near municipality; ASR well construction; pipeline construction</td>
</tr>
<tr>
<td>Qualitative Considerations</td>
<td>Project size meets 100% of demand</td>
<td>Project size meets 25% of demand</td>
<td>Project size meets <10% of demand</td>
</tr>
</tbody>
</table>