Ways to Minimize Water Usage in Engineered Geothermal Systems

Joanna McFarlane
Kevin Qualls, Lou Qualls, Adrian Sabau, Hebi Yin, Larry Anovitz, Andy Kercher

Oak Ridge National Laboratory

Steve Wright

Sandia National Laboratory

Groundwater Protection Council

September 27, 2011
Engineered geothermal systems are sited in locations lacking one or more advantageous features: porous rock, high temperatures, abundant subsurface water.
Water Use in Engineered Geothermal Systems

Drilling
- Hydraulic fracturing

Production
- Open system – water is pumped and discharged at the surface
- Closed system – pumped water is reinjected
- Heat rejection at power station

<table>
<thead>
<tr>
<th>Utility type</th>
<th>Average Water Use (L·(MWh)^-1)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroelectric</td>
<td>47000 (evaporation from reservoirs)</td>
<td></td>
</tr>
<tr>
<td>Geothermal (hydrothermal)</td>
<td>5400 (geyser flash evaporation)</td>
<td></td>
</tr>
<tr>
<td>Nuclear thermal</td>
<td>3200 (cooling)</td>
<td></td>
</tr>
<tr>
<td>Coal (conventional)</td>
<td>3000 (cooling)</td>
<td></td>
</tr>
<tr>
<td>Concentrated solar</td>
<td>2900 (cooling)</td>
<td></td>
</tr>
<tr>
<td>Gas fired (conventional)</td>
<td>2300 (cooling)</td>
<td></td>
</tr>
<tr>
<td>Integrated gas combined cycle (IGCC)</td>
<td>880 (cooling)</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Solar photovoltaics</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Merson 2006 – Report to Congress
Subsurface Flow Affects Efficiency

- Efficiency related to energy to pump fluid through rock
- Depends on rock permeability
- Depends on heat recharge
- Dynamic effect
 - Pulsed fluid flows
 - Long term fluctuations, seasonal

Tomographic scan of sample from The Geysers, CA
Multiscale Study of Rock Porosity

- Nanoscale imaging from neutron scattering
- X-ray microtomography
 - 3-D images
- Analyze using correlation analysis to give “connected porosity”
- Larger scale by sampling throughout play
- Developing methods to avoid bias in results

Bedding evident in shale sample
Extension to Water/Rock Interactions

- Working to develop a model relating connected porosity to permeability
- Needs to account for the properties of the rock
 - Heterogeneity using fractal analysis (Li & Horne 2009)

- Needs to account for the properties of the fluid
 - Salinity
 - Density
 - Viscosity
 - Fluid/rock chemistry
 - (Franke and Thorade 2010)

- Long term variation in heat transport, rock microstructure

![Images of igneous and sedimentary rocks](images.jpg)
Cooling Water and Advanced Power Cycle Development

- Traditional geothermal has efficiency ~12%
- EGS has lower efficiency because source temperature <200°C
- Evaluated Organic Rankine and supercritical cycles with mixtures of CO₂ and refrigerants
- Evaluated the effect of cooling temperature on efficiency
Thermodynamic Modeling of Power Cycles

• Set parameters
 – Source temperature
 – Coolant temperature
 – Working fluid composition (and properties)
 – Pumping speed
 – Pressure drop
 – Cycle pressure ratio

• Varied areas of heat exchangers iteratively (closed system) to get mathematical convergence

• Calculated cycle efficiency

\[\eta_T = \frac{W_{net}}{Q_{in}} = \frac{W_{Turb} - W_{Pump}}{Q_{in}} \]

Sabau et al. AMSE 2011
Efficiency Gains from Supercritical Working Fluids

- Efficiency more strongly correlated with condenser size than evaporator size
- Tradeoff between performance of condenser and recuperator
- With condensation, saw 13.5% maximum efficiency
- For air cooling, need higher critical point fluid running in supercritical Brayton cycle, giving maximum efficiency of ~11% from these calculations
Experimental Study of Supercritical Mixtures at Sandia National Laboratories

Measured:

- Compressor performance
- Mixture properties
 - CO₂ + n-butane
 - CO₂ + SF6
 - CO₂ + helium
 - CO₂ + neon
- Materials compatibility
Study of New Supercritical Mixtures

Equation of State

Viscosity

η, λ are proportional to density, ρ, molecular volume, b, and radial distribution function, χ

Experiment

Modeling

$\frac{P}{\rho k T} = 1 + \frac{(b_k - a)}{1 + 0.227 \rho \Gamma} + \frac{a \rho}{1 - \Gamma \rho}$

Molecular dynamics gives $B_2(T)$, $\alpha(T)$, $\beta(T)$

Measurements \rightarrow Cubic EOS

EOS from stat mech

\rightarrow Measurements
Areas for Further Investigation in Geothermal Water Use

- **Subsurface water use**
 - Develop *in-situ* neutron scattering analysis of fluid in pores
 - Study changes in water flow, heat flow, water chemistry over time
 - Evaluate competing factors in siting, such as depth versus porosity, number of wells

- **Surface water use**
 - Determine effect of impurities for reuse of flowback water
 - Study effect of impurities in working fluids
 - Develop efficient heat exchanger design
Water Use Can Be Reduced by Planning and Optimization

- Coordinate with utilities, municipalities, regulators
- Determine engineering and regulatory requirements for water reuse
- Take advantage of water recycle opportunities
- Understand complete water cycle and account for losses
- Geothermal won’t increase unless solutions found for water use

Energy Generation from Renewables

![Graph showing energy generation from renewables from 2003 to 2009](chart.png)

www.eia.gov
Acknowledgments

Thermodynamic Modeling
 • Adrian Sabau
 • Hebi Yin
 • Lou Qualls

Experimental Loop (Sandia)
 • Steve Wright

Fluid Properties
 • Joanna McFarlane

Rock Porosity
 • Larry Anovitz
 • Andy Kercher
 • Kevin Qualls

This work was performed for the project “Working Fluids and Their Effect on Geothermal Turbines” sponsored by the Geothermal Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy under contract DE-AC05-00OR22725, Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.