Environmental Costs of Managing Geological Brines Produced or Extracted During Energy Development

Christopher B. Harto
Argonne National Laboratory

Groundwater Protection Council Annual Forum
Atlanta, GA
September 24-28, 2011
Acknowledgments

- DOE/NETL provided funding to support the work
- Andrea McNemar - NETL
- John Veil – Veil Environmental
Topics Addressed

- Energy systems that produce brines
- Composition of typical geological brines
- Water management options
- Environmental costs of water management
Sources of Geological Brines

- Produced and Flowback Water from Oil and Gas Operations
- Water Extracted from Deep Saline Aquifers used for Carbon Sequestration
- Spent Geofluid from Geopressured Geothermal Systems
Water Composition

- Examples of the geochemical data
 - Formation TDS varies significantly by location
 - Formation pH ranges from slightly acidic to slightly basic

- Management solution must be targeted to unique local brine chemistry

- Note: data for geological formations of interest for carbon sequestration

Source: Harto and Veil 2011
Variation in TDS Between Regions

Source: Harto and Veil 2011
Water Management Options

- **Reuse**
 - **Use as is**
 - Injection for recovering more oil
 - Hydraulic fracturing or drilling fluid
 - Enhanced geothermal systems makeup water
 - Injection for hydrological purposes
 - **Use after treatment**
 - Industrial
 - Cooling water
 - Dust control
 - Agricultural
 - Irrigation
 - Livestock
 - Drinking

Source: USFWS
Water Management Options

Treatment Technologies for TDS/Salt Removal

Membrane Processes

Photo by John Veil

Thermal Treatment

Photo by Chris Harto

Photo by John Veil
Water Management Options

- Disposal of Extracted Water
 - Injection to non-hydrocarbon producing formation (UIC class II)
 - Evaporation
Balancing Environmental Costs and Benefits

- When selecting a water management you must weight the costs and benefits of the alternatives.
- Hybrid life cycle assessment (LCA) approach used to compare:
 - Energy consumption
 - GHG emissions
 - Net water savings

Source: EPA 2006
Hybrid Life Cycle Assessment

- Combines process based LCA approach with economic input-output LCA approach (EIOLCA).
- **Process approach**
 - Ideal for well characterized processes
 - Requires lots of specific data
 - Suffers from cut-off error
- **EIOLCA approach**
 - Suitable for more general processes
 - Only requires capital costs
 - Suffers from aggregation error
- Process approach utilized for direct process inputs
- EIOLCA approach used to consider capital equipment impacts
Example Scenario: Marcellus Shale

- Analysis for a single well in Marcellus Shale
- 4 options considered
 - Thermal treatment on site
 - Thermal treatment at centralized facility
 - Thermal treatment at centralized facility utilizing waste heat
 - Transport to UIC injection well
- Key Scenario Parameters
 - Transportation distance (0, 30, 150 miles for on site, centralized facility, injection)
 - All transportation by truck
 - Concentrate disposed of through UIC class II injection in Ohio
Results

- Higher efficiency of central location outweighs the energy for transportation for energy and GHG
- Thermal treatment more energy intensive than injection unless waste heat used
- Net water savings
 - Treatment system returns 0.66 bbl of clean water for every 1 bbl treated
- Other considerations
 - Availability
 - # of truck trips
 - costs

![Life Cycle Energy Consumption](chart1)

![Life Cycle GHG Emissions](chart2)
Further study in progress

- Management options will be included for further study
 - Reuse without treatment for TDS
 - Treatment to remove TDS
 - At least one reverse osmosis system
 - At least two thermal treatment systems
 - Disposal
 - Deep well injection
 - Evaporation

- Consider alternative transportation parameters
 - Truck vs. Pipeline
 - Transportation distance

- Explore impact of water quality (TDS)
Final Thoughts

- A number of energy development activities can result in the production of large quantities of salty water.
- Managing these brines can be a challenging, but must be done in environmentally responsible manner.
- When selecting the best management practices a number of factors should be considered in addition to cost.
- LCA is one useful tool for comparing the environmental footprint of competing options.