• Introduction

• Fluid Migration Characterization

• State-of-stress Characterization

• Risk-based Area of Review

• U.S. DOE’s SMART Initiative

• Plume Dynamics and Conformance

• Induced Seismicity Management

• Monitoring for Leak Detection

• Site Closure

• Discussion
Evaluating potential leakage risks during pre-injection characterization stage amidst uncertainty

Integrating the NRAP approach with the Class VI permitting process
Class VI - Site Characterization

Overview

• Site characterization: gather the data necessary to justify selection of a CO$_2$ storage site

• Class VI wells must be located in a geologic system that:
 - Has the properties necessary to receive the total anticipated injected volume of CO$_2$ - capacity & injectivity
 - Has a caprock sufficient to contain the injected CO$_2$ - containment

[Image: https://www.epa.gov/uic/class-vi-wells-used-geologic-sequestration-co2]
Class VI - Site Characterization

Class VI permit applicants must provide extensive information about the local and regional geology and hydrogeology of the proposed site [40 CFR 146.82(a)(2),(3),(5),(6)].

- Regional geology, hydrogeology
- Thickness, mineralogy, porosity, permeability of injection zone & overlying formations
- Suspected faults and fractures
- Geomechanical properties
- Seismic history
- Locations and geochemistry of USDWs

The geologic data should represent all formations of interest, from the land surface to the injection zone (or to the lower confining zone, if the applicant is seeking an injection depth waiver). Data should be representative of the entire AoR and optimally provide some information on the general area surrounding the AoR. There should also...
4.1.2 AoR and Corrective Action

The Class VI Rule requires owners or operators to develop and submit an AoR and Corrective Action Plan as part of their permit application [40 CFR 146.82(a)(4),(13); 146.84(b)]. The plan must document the owner or operator’s compliance with the AoR delineation requirements (including the AoR delineation modeling approach), present a comprehensive strategy for AoR reevaluations over the duration of the project, and describe how any necessary corrective action will be conducted.

The determination of site-suitability and strategies for compliance with the testing and monitoring, financial responsibility, and emergency and remedial response requirements.

The UIC Program should also review all corrective action information to ensure that all artificial penetrations that may allow fluid movement into USDWs in the AoR are identified and appropriately addressed by corrective action to ensure that they do not serve as conduits for fluid movement.

Source: UIC Program Class VI Implementation Manual for UIC Program Directors
Reservoir characterization can be used for modeling

Site Characterization Data

Numerical Reservoir Model

Reservoir Simulation Results

Wainwright et al, IJGGC 2013
Uncertainties in permeability (& porosity, …) impact predictions of AoR

Multiple realizations of permeability distributions developed using site data from multiple wells.

(Pawar et al, Energy Procedia, 2016)
From reservoir simulations to identifying risks of fluid movement through wells

determination of site-suitability and strategies for compliance with the testing and monitoring, financial responsibility, and emergency and remedial response requirements).

The UIC Program should also review all corrective action information to ensure that all artificial penetrations that may allow fluid movement into USDWs in the AoR are identified and appropriately addressed by corrective action to ensure that they do not serve as conduits for fluid movement.
NRAP’s Integrated assessment modeling approach: NRAP-Open-IAM

NRAP-Open-IAM:
- Demonstrates how a system, from surface to target formation, can be simulated
- Integrates multiple, fast, predictive models (reduced order models, ROMs) for predicting fluid movement and groundwater impacts

NRAP-Open-IAM:
- “Not” intended to replace existing reservoir simulators
- “Not” aimed at being a catch-all for all GCS sites
- Workflow and design can be adapted for different sites
Wellbore ROM

• Calculate rates of CO₂ and brine flow through a wellbore
 ✔ Flow into groundwater and atmosphere
 ✔ Account for fluid migration into intermediate permeable zones

• Two types of built-in ROMs
 ✔ Cemented wellbore
 ✔ Open wellbore

• ROMs developed using high-fidelity simulations coupling reservoir and wellbore
 ✔ Complex physics of multi-phase flow with phase change

(Cemented wellbore simulations to develop ROM)

Open wellbore simulations to develop ROM

(Jordan et al., 2015; Harp, et al., 2016)
• Calculate impacted volume of aquifer above threshold concentrations in case of unintended fluid migration:
 - pH
 - TDS
 - Trace metals: arsenic, barium, cadmium, lead
 - Organics: benzene, naphthalene, phenol

• Two threshold values:
 - MCL
 - No-impact (background 95th percentile) - Last, 2013

• Two aquifer models:
 - Unconfined, oxidizing carbonate aquifer (based on Edwards Aquifer)
 - Confined alluvium aquifer (based on High Plains Aquifer)

Geochemical simulations of CO₂ and brine flow and subsequent changes in groundwater aquifer to develop ROM
Atmospheric ROM

• Calculate CO₂ concentration at receptors and critical zone of concentration change
 ➢ Given locations of leak and potential receptors

• Account for surface atmospheric conditions
 ➢ Ambient pressure
 ➢ Ambient temperature
 ➢ Wind velocity at 10 m height
 ➢ Critical concentration
 ➢ Source temperature

Prediction of CO₂ concentration in case of migration to the surface

Model verified against CFD simulations
NRAP’s Wellbore Characterization Research

Developed distributions of wellbore cement permeability based on SCP-VF field observations

Laboratory experiments to characterize CO₂/Brine flow through fractured cement

Methodology for characterization of leakage potential of existing wells

(Huerta, et al., 2016)
What can be done with NRAP-Open-IAM during pre-injection phase

- **Identify artificial penetrations within AoR that may lead to fluid movement**
 - Compute the probability of unintended fluid migration into groundwater aquifers or the atmosphere
 - Compute impacts of unintended fluid migration on groundwater aquifers based on threshold values

- **Inform decision making while taking into account uncertainties**
 - Determine the importance of parameters and uncertainties on the probability of unintended fluid migration
 - Site characteristics, operational choices, etc.

Review geologic information submitted per 40 CFR 146.82(a). Review this information to confirm that the geologic site characterization is based on appropriately collected site-specific information or relevant existing data or literature about the proposed site; identify any potential site attributes that may affect its suitability for GS; and identify uncertainties to be addressed via pre-operational testing, operational changes, targeted testing and monitoring, or other permit conditions.
NRAP-Open-IAM can be used for site-specific applications

<table>
<thead>
<tr>
<th>Component</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir</td>
<td>User supplied site-specific simulation results</td>
</tr>
<tr>
<td>Wellbore</td>
<td>Location, Type (Cemented/Open), Spatial Density, Cement Permeability</td>
</tr>
<tr>
<td>Groundwater Aquifer</td>
<td>Hydrological and Geochemical Parameters</td>
</tr>
<tr>
<td>Intermediate Reservoir</td>
<td>Location, Permeability, Thickness</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Elevation, Wind speed, Ambient T & P, Leak Temperature, Detection Threshold</td>
</tr>
</tbody>
</table>

- Parameters can be specified as distributions
- Probabilistic calculations using multiple realizations
Probabilistic assessment of unintended fluid migration and impacts

Probability of potential groundwater impact:
volume of groundwater with pH change

Probability of CO₂ migration into the atmosphere

Probability of CO₂ migration out of primary containment

Hypothetical cases, for demonstration only
Assessing impact of uncertain parameters

Importance of different uncertain parameters on impacts of fluid movement into groundwater

Hypothetical case, for demonstration only
Summary

• The Class VI regulations require extensive geologic and hydrogeologic information to demonstrate suitability of a CO₂ storage site.
• Many of the key elements of a GCS site have uncertainties.
• Site characterization data can be used to not only simulate injection response in the reservoir but also potential fluid migration beyond.
• The quantitative framework embodied in the NRAP approach and NRAP-Open-IAM can be used to assess risks of unintended fluid migration at a GCS site.
• NRAP-Open-IAM can also be used to characterize and constrain uncertainty which can aid the decision making process.