CONSIDERATIONS FOR TREATING WATER ASSOCIATED WITH SHALE GAS DEVELOPMENT

GROUNDWATER PROTECTION COUNCIL
Water/ Energy Sustainability Symposium
2010 Annual Forum
Pittsburgh, Pennsylvania
September 26- 29, 2010

David Alleman, ALL Consulting
Funding for this project was provided by DOE’s National Energy Technology Laboratory.

ALL Consulting is the primary research organization with the Ground Water Protection Council serving as a research partner.

Other cooperators include state agencies, treatment companies, and industry.
NETL: Program designed to promote domestic natural gas production by providing technologies to overcome the technical challenges associated with unconventional resources.
PW Treatment Catalog/Tool

- Major Treatment Technologies:
 - Capabilities
 - Availability by Play
 - Vendors
 - Cost Estimates/Ranges
- Mixing and Scale Affinity Model
- Regulatory Considerations
- Disposal Considerations
INTRODUCTION

• Shale gas holds tremendous potential for U.S. energy supply.
• High volume hydraulic fracturing (HVHF) is an important key to developing this resource.
• Managing water for HVHF can be a challenge.
• Treatment can alleviate source and disposal issues.
• Water is treated for many reasons, the right technology varies!
SHALE GAS FOCUS AREAS

- Barnett
- Fayetteville
- Haynesville
- Marcellus
- Woodford
HYDRAULIC FRACTURING

- Horizontal wells completed in shale use 3 to 5 Million gallons of water to hydraulically fracture
- High Volume HF is typically done in 6-18 consecutive stages
- Water is obtained from varies sources and delivered by truck or pipeline
- On site storage is in tanks or centralized impoundments
- 15 to 50 %(or more) of the fracture fluid is recovered
Water Considerations

- Pre-completion
 - Withdrawal
 - Transport
 - Storage
- Completion
- Post-completion
 - Storage
 - Transportation
 - Treatment for disposition
PRE-COMPLETION
Options available to meet water needs for drilling and fracturing

- Surface Water
- Groundwater
- Municipal Water
- Recycled Produced Water
- Collected Water
- Private Water Purchases

Total Water in Gallons to Drill and Fracture

Drilling performed with an air mist/water based/oil based mud for deep horizontal well completions.
Sourcing Challenges

- **Withdrawal:**
 - Access
 - Timing
 - Permitting - regulations are complex and changing
 - Other uses

- **Transport:**
 - Cost
 - Potential Road and community impacts

- **Storage:**
 - Cost
 - Surface disturbance
 - Permitting

- **Cumulative Impacts**

Barnett Shale Water Uses

- Public Supply 82.70%
- Irrigation 6.30%
- Livestock 2.30%
- Power Generation 3.70%
- Industrial and Mining 4.50%
- Shale Gas Wells 0.40%

Groundwater Use in Barnett shale counties ranges from 1.95 percent in Somervall County to 85 percent in Cooke County

ALL Consulting
COMPLETION
HF Fluid Composition

- Fracture fluid chemicals are in the headlines
- Other parameters have significant implications
 - TDS concentration
 - Scale tendencies
 - Biocide requirements

Regulatory agencies are pressing for disclosure (e.g. AR, NY, PA, TX, WY, and others)

Additives for fracturing are considered “treatment”

Source: Compiled from Data collected at a Fayetteville Shale Fracture Stimulation by ALL Consulting 2008.
PW MANAGEMENT OPTIONS

• Four Basic Options
 – Injection
 – Surface discharge
 – Beneficial use
 – Reuse in HVHF

• All options have challenges

• All options may require some level of treatment
Injection Challenges

• Limited UIC well capacity
 – Geologic limitations
 – Timing – few wells in newly developed areas
• Lack of near-by wells creates transportation issues
INJECTION CHALLENGES

• Limited UIC well capacity
 – Geologic limitations
 – Timing – few wells in newly developed areas
• Lack of near-by wells creates transportation issues
DISCHARGE/BENEFICIAL USE CHALLENGES

- Treatment required
- Disposal of treatment concentrate
- Changing regulatory requirements
- Potential environmental impacts
- Potential liability issues
Reuse Benefits

- Reduced withdrawals (and associated concerns)
- Reduced Disposal needs
- Reduced cost
- Reduced environmental concerns
REUSE CHALLENGES

• Blended water must be suitable for fracture fluid
• TDS concentration – effect on friction reducers
• Scale tendencies
• Bio-fouling
Three primary treatment goals

- Reduce TDS (desalination) for discharge/beneficial use
- Reduce volume for disposal
- Reduce scaling and bio-fouling for reuse or UIC

Produced water quality varies

- Between basins
- Within basins
- Over time

High TDS concentrations limit treatment options
Produced Water Quality

Barnett
- 50,000 - 250,000 mg/L TDS

Marcellus
- TDS Highly variable (50,000-300,000 mg/L)

Fayetteville
- 8,000 - 30,000 mg/L TDS

Haynesville
- 150,000 - 250,000 mg/L TDS
TREATMENT – DESALINATION

• Thermal Distillation
 – Mechanical Vapor Recompression (MVR)
 – Condenses steam for reuse
 – Corrosion/scale can be problems
 – TDS <200,000 mg/L

• Reverse Osmosis
 – Force water through an osmotic membrane
 – Membrane fouling and replacement costly
 – TDS <40,000 mg/L
TREATMENT - VOLUME REDUCTION

- Thermal Evaporation
 - Reduced volume
 - Dispose of concentrate
- Crystallization
 - No limit on TDS
 - Zero Liquid Discharge
 - Dispose of solids
PRE-TREATMENT/CONDITIONING

- Flocculation – remove suspended solids
- Scale inhibitors
- pH adjustments

- Biocides
 - Liquid chemical biocides
 - Ozone
 - Kills microbes
 - Affected by COD
 - Limited residual kill
 - Ultraviolet Light
 - Kills microbes
 - No residual kill
 - Ultrasound
 - Reduces biological growth.
 - Can reduce concentrations of heavy metals, TSS and turbidity levels
 - More effective when it is applied with ultraviolet light or ozone
Treatment/Constituent

<table>
<thead>
<tr>
<th>Water Treatment Process</th>
<th>Organics</th>
<th>Suspended Solids</th>
<th>Biologics (bacteria & algae)</th>
<th>Low TDS (<10,000 mg/L)</th>
<th>Med TDS (<50,000 mg/L)</th>
<th>High TDS (>50,000 mg/L)</th>
<th>Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Distillation/Evaporation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Crystallization</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reverse Osmosis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UV Sterilization</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Matrix Table

![Matrix Table Image](image-url)
MANAGEMENT/TREATMENT DRIVERS

• Social
• Environmental
 – Conservation of Resources
 – Aquatic Impacts
• Economic
 – Cost of withdrawals
 – Cost of transportation
• Technical
 – Lack of injection capacity
 – Treatment limitations
• Company policies
TREATMENT

- Availability varies by basin
- New vendors entering the market
- Several pilots underway/planned

- Treatment for shale gas water remains in its infancy
Key Messages

• Shale Gas is going to remaining an important source of energy
• Large volumes of water are necessary for production
• Treatment can conserve source water and reduce waste stream
• Treatment is more than desalination
• Desalination options are limited
• Reuse is an important option
• Treatment technologies are advancing and changing
Contact Information

David Alleman
dalleman@all-llc.com
ALL Consulting
1718 S. Cheyenne Avenue
Tulsa, Oklahoma 74119