RBDMS-Environmental: A Foundation for Water Budgets and Shaping Policy in Alabama

Ground Water Protection Council 2019 Annual Forum

Ann Compton Arnold, P. G.
Hydrogeologist
Geological Survey of Alabama

205.247.3618
Alabama geology controls hydrologic flow regimes.

Alabama is divided into several distinctive GEOLOGIC PROVINCES on AL Geologic Map.

- **EAST GULF COASTAL PLAIN** (Cretaceous-Tertiary Sedimentary rocks); large Unconfined & Confined aquifers
- **PIEDMONT UPLAND** (Crystalline & Metamorphic Rocks: Paleozoic, some Precambrian); *Surface Water primary*
- **VALLEY & RIDGE** (Paleozoic folded, faulted sedimentary rocks); Aquifers mostly in limestone units
- **CUMBERLAND PLATEAU** (Paleozoic sedimentary rocks); *Surface Water primary*
- **HIGHLAND RIM** (Paleozoic limestone); Karstic conduit Unconfined prolific aquifers (hit or miss); *Strong surface water - groundwater interconnection*
Alabama Groundwater Well Networks:
- **PERIODIC** (Spring & Fall)
- **REAL-TIME** (Continuous)

BACKGROUND Observation Wells
Not likely influenced by GW Pumping

Piedmont and Plateau provinces are not prolific groundwater producing regions. *These 2 geologic regions RELY mostly on surface water sources.*
USGS National Ground Water Network

NGWMN PLANS ARE BIG FOR 2019... AND BEYOND

• Currently GSA operates 32 Real-Time monitoring wells across the State

• Plan to add 5 more continuously measured wells (FY 2019). If integrated 3G units are not feasible, will install pressure transducers that can be downloaded every 6 mos.

• Water levels measured every 2 hours, transmitted office daily

• Data linked to online hydrographs

• Existing data available to USGS National Ground Water Network by August 2020
Site selection for groundwater monitoring to evaluate USE:

First, look at groundwater use. Then assess current observation monitoring points, to select network classification. AL OWR maintains Certificates of Use (COU). These are self-reported, no metered data.

Red Circles: Areas of potential impact due to groundwater withdrawal.

Blue Polygons: Potential Background Areas, with less anthropogenic influence due to groundwater withdrawal.

NGWMN classification will be based on hydrograph analyses.
RBDMS-Environmental provides simple organization for detailed well information.

BENEFITS:

- Relational database for water wells, accessible via a desktop
- Verify data quality before it is uploaded
- Multiple people using the system can be granted different level of access privileges (i.e., 5 users can edit; 2 can approve prior to upload)
- Useful data architecture for storage, retrieval and future needs, especially for outside agency data
Alabama Water Wells: a work-in-progress

Alabama Wells: entered by county

No. 1 public info request is “how many wells & detail within a given radius?”
RBDMS Search by Project: Real-Time Wells

Browse Facilities

Facility List

<table>
<thead>
<tr>
<th>Facility Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Type</td>
</tr>
<tr>
<td>Latitude27</td>
</tr>
<tr>
<td>Longitude27</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>Township</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select</th>
<th>RBDMS ID</th>
<th>GSA ID</th>
<th>County</th>
<th>Owner</th>
<th>Facility Type</th>
<th>Latitude27</th>
<th>Longitude27</th>
<th>Section</th>
<th>Township</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92278</td>
<td>BAL-2</td>
<td>Baldwin</td>
<td>Gulf State Park (GSA Real-Time Wells)</td>
<td>Observation</td>
<td>30.2803</td>
<td>-87.6498</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>92272</td>
<td>BAL-3</td>
<td>Baldwin</td>
<td>Gulf State Park (GSA Real-Time Wells)</td>
<td>Observation</td>
<td>30.2802</td>
<td>-87.6499</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>92197</td>
<td>BAL-5</td>
<td>Baldwin</td>
<td>Riviera Utilities (GSA Real-Time Wells)</td>
<td>Observation</td>
<td>30.4079</td>
<td>-87.6846</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>144915</td>
<td>BAL-6</td>
<td>Baldwin</td>
<td>Geological Survey of Alabama</td>
<td>Observation</td>
<td>30.4308</td>
<td>-87.4172</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>125648</td>
<td>LSDSP</td>
<td>Limestone</td>
<td>Geological Survey of Alabama</td>
<td>Observation</td>
<td>34.7028</td>
<td>-86.8296</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>93871</td>
<td>CHI-1</td>
<td>Chilton</td>
<td>Town of Mapesville</td>
<td>Public</td>
<td>32.7958</td>
<td>-86.8769</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>119719</td>
<td>CHO-1</td>
<td>Choctaw</td>
<td>Pranks</td>
<td>Observation</td>
<td>31.9329</td>
<td>-88.4576</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>119833</td>
<td>COL-1</td>
<td>Colbert</td>
<td>Occidental Chemical</td>
<td>Observation</td>
<td>34.7731</td>
<td>-87.6312</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>144914</td>
<td>COV-1</td>
<td>Covington</td>
<td>Bailey</td>
<td>Agricultural</td>
<td>31.0853</td>
<td>-86.5527</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>96800</td>
<td>DLE-1</td>
<td>Dale</td>
<td>GSA Real-Time Well</td>
<td>Observation</td>
<td>31.3772</td>
<td>-85.5805</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>96244</td>
<td>DLE-2</td>
<td>Dale</td>
<td>Pleasant Ridge Church</td>
<td>Domestic</td>
<td>31.5761</td>
<td>-85.5976</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>97994</td>
<td>GEN-1</td>
<td>Geneva</td>
<td>Coffee Springs</td>
<td>Observation</td>
<td>31.1670</td>
<td>-85.9101</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>119684</td>
<td>GRE-3</td>
<td>Greene</td>
<td>USGS</td>
<td>Observation</td>
<td>32.8356</td>
<td>-87.8892</td>
<td>33</td>
<td>22</td>
</tr>
</tbody>
</table>
Hydrograph of Real-Time Well Chilton 1

Location: Chilton County
Aquifer: Coker
Depth of Well: 253 feet BLS
Land Surface Elevation: 379 feet AMSL
RBDMS SEARCH BY COUNTY, SHOW AQUIFER

Browse Facilities

Facility List Reports Map Help

<table>
<thead>
<tr>
<th>Select</th>
<th>RBDM ID</th>
<th>GSA ID</th>
<th>County</th>
<th>Owner</th>
<th>AQUIFER</th>
<th>Section</th>
<th>Township</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>93219</td>
<td>021A33001</td>
<td>Chilton</td>
<td>Leigh</td>
<td>Bangor Limestone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93220</td>
<td>021A33002</td>
<td>Chilton</td>
<td>Stewart</td>
<td>Bibb Dolomite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93249</td>
<td>021B27001</td>
<td>Chilton</td>
<td>Coonrod</td>
<td>Brierfield Dolomite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93257</td>
<td>021B31001</td>
<td>Chilton</td>
<td>Green</td>
<td>Chepultepec Dolomite Undifferentiated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93250</td>
<td>021C00001</td>
<td>Chilton</td>
<td>Tew</td>
<td>Chickamauga Limestone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93251</td>
<td>021C00002</td>
<td>Chilton</td>
<td>Holt</td>
<td>Chilhowee Group Undiff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93252</td>
<td>021C00003</td>
<td>Chilton</td>
<td>Morrison</td>
<td>Citronelle Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93253</td>
<td>021C14001</td>
<td>Chilton</td>
<td>Holcombe</td>
<td>Clayton Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93254</td>
<td>021C15001</td>
<td>Chilton</td>
<td>Wooten</td>
<td>Coker Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93255</td>
<td>021C15002</td>
<td>Chilton</td>
<td>Lee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93240</td>
<td>021C19001</td>
<td>Chilton</td>
<td>Hamilton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93227</td>
<td>021C20001</td>
<td>Chilton</td>
<td>Horton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93239</td>
<td>021C22001</td>
<td>Chilton</td>
<td>L and N Railroad</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
County: Autauga
Name: 001J35002
Type: Domestic
MediaType: Y
Latitude: 32.466035
Longitude: -86.538036
Section: 35
Township: 18
Township Direction: N
Range: 15
Range Direction: E
WHY ALABAMA WANTS TO EXPAND USE OF RBDMS

Why flexible report production and data management are so important in real-time:

- **DROUGHTS**
- **FLOODS**
- **STORMS**: especially Hurricane impacts along coast

Where work needs development:

- Improved report compilation.
- Need for data conformity, since we may add other agencies data.
AQUIFER RECHARGE POTENTIAL IN ALABAMA

BLUE = HIGH
RED = LOW
LOOKING FOR SELECT WELLS/DATA ON PUBLIC LANDS TO EXPAND REAL-TIME NETWORK

ADEM
Monitor Wells for UST, Landfills, RCRA sites, etc

Oil & Gas Local water supply wells

DCNR State Lands

Dept of Transportation Wells

EXPAND Real-Time Network

Drought purpose evaluated

AL Real-Time Wells: more frequent measurements (daily averages) over a longer term, Assess shorter-term affects, seasonal variation, and long-term TRENDS
ADEM UST Wells: public data
Year 2000 Drought

Year 2016 Drought
DROUGHT IN ALABAMA IS **NOT** A WATER SUPPLY PROBLEM. IT IS A WATER MANAGEMENT PROBLEM.

ALABAMA HAS ONE WATER MANAGEMENT DISTRICT IN SOUTHEAST PART OF STATE.

ALABAMA NEEDS TO CREATE LEGISLATION TO BECOME A REGULATED RIPARIAN STATE.

GSA’S GOAL IS TO BUILD & COMMUNICATE THE SCIENCE TO SUPPORT INFORMED SCIENCE-BASED POLICY-MAKING.
Ground- and Surface-Water Use Percentages of Total Public Water Supply Use

Sources of water-use data, GSA, AOWR, USGS
CIRCLE OF LIFE

COMPETITION for RESOURCES: Need to Collaborate and Build Consensus
WRAP UP

• Alabama has water: rainfall, groundwater
• We need to plan for climate fluctuations.
• Drought and flood are big water issues to manage.
• In times of drought (water need), people will pump more, draining both groundwater and surface water bodies, that we know are interconnected. We want to document connectivity with data.
• Water scarcity is an issue that is growing with the population growth. Competition for use and legal development.
RBDMS-Environmental: collaborate & finish strong

Ann Compton Arnold, P.G.
Hydrogeologist
Geological Survey of Alabama

205.247.3618

aarnold@gsa.state.al.us
www.gsa.state.al.us
THANK YOU

QUESTIONS ?