Leveraging economics to minimize challenges and create opportunities for effective produced water management

Holly Churman, Jonathan Eller, and Chris Benjamin
September 11, 2018
Agenda

• Produced Water Overview
• Challenges and Opportunities
• Oilfield Water Management
• Decision-making
• Case Example
• Conclusions
• Questions
Produced Water

Produced water originates in underground formations and is brought to the surface during oil and gas production.

- Complex composition
- Flows and volumes vary
- Impacts infrastructure
 - Scaling
 - Corrosion
 - Erosion
 - Fouling
- Hydrogen sulfide gas production
Opportunities

Large water volumes are needed for hydraulic fracturing. Reusing produced water for fracking reduces demand on local water supplies.
Opportunities

Minimizing produced water disposal reduces induced seismicity risk.

Based on results from this study:

- Chance of potentially minor-damage ground shaking in 2018:
 - <1%
 - 1% - 2%
 - 2% - 5%
 - 5% - 10%
 - 10% - 14%

Locations of USGS temporary seismic deployments
Oilfield Water Cycle

Water affects oilfield logistics, and becomes more complex as fields develop.

Field Development (Walsh 2013)

Stage 1:
Remote, isolated wells.

Stage 2:
Well clusters with some infield drilling and completions.

Stage 3:
Extensive in-field development.
All produced water management decisions come with costs. Economics enables options comparison and arrival at appropriate solutions.
What have we done before?

Trade-off evaluations can be time-consuming, cumbersome, and incomplete.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Challenges</th>
<th>Sensitivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rigorous designs</td>
<td>• Quality of information</td>
<td>• Oil price</td>
</tr>
<tr>
<td>• In-house models</td>
<td>• Geographic specificity</td>
<td>• Drilling Schedule</td>
</tr>
<tr>
<td>• Consulting studies</td>
<td>• Operating time horizons</td>
<td>• Good and service cost fluctuations</td>
</tr>
<tr>
<td></td>
<td>• Integration of disparate factors</td>
<td></td>
</tr>
</tbody>
</table>
What can we accomplish today?

Economic modeling allows for rapid, equivalent, and relevant options analysis.

Operations Recycle

Sourcing + Storage + Treatment + Transportation + Disposal → Treated water revenue

Beneficial Reuse

Wells to Central - Trucking
Wells to SWDs - Trucking
Wells to Central - Pipeline
Central to SWD - Trucking
Example: Infield Development

Assets:
- 12 Production Wells
- 3 SWDs
- 1 Centralized Treatment Facility

Logistics Assumptions:
- Injection Cost $0.30/bbl
- Trucking Cost
 - Compare $50, $75 and $100 per hour
- Treatment Cost
 - Mobile $1.00/bbl
 - Centralized $0.80/bbl
- Source water cost $0.65/bbl
- 30-year project lifespan
Results

A phased approach will enable holistic, cost-effective field development.

Years 0 – 5:
- SWDs are most economical for produced water disposal.
- Mobile < centralized.

Years 5 – 15:
- Centralized < mobile.
- Centralized + pipeline competes with SWDs when trucking costs are low.

Strategy:
- Phased approach
- Year 1 – 5: SWDs
- Year 7: centralized treatment
- Use mobile treatment as a bridge
Conclusion

- Produced water is a critical bottleneck.
- Effective management can achieve operational, economic, safety, environmental, and sustainability goals.
- Sourcing, storage, treatment, transportation, reuse and disposal comprise key decisions.
- Current methods are time-consuming, cumbersome, and incomplete.
- Economic modeling enables rapid, equivalent, and relevant analysis.
- Economics can drive creative solutions.
Questions?

Holly Churman
holly.churman@ghd.com
(832) 485-5242

www.ghd.com
References

