Water Use In the Eagle Ford Shale Play: A Systems Dynamics Approach

Jeanne Eckhart

Virtual Policy Fellow, American Water Works Association

Masters Candidate Energy and Earth Resources, The University of Texas at Austin
Project Overview

• Objectives of Study:
 – Assess localized water use impacts from Eagle Ford shale play
 – Utilize a Systems Dynamics approach
 • The approach requires input from many different stakeholders
 – Output: policy recommendations and potential goals for policymakers

• Accessing data only made publicly available
 – FracFocus

• Timeline of Study
 – Approximately 5 months
Federal vs. State vs. more localized

- Federal Level
 - Different shale plays have different attributes that are not uniform across the nation

- State Level Water Usage (TWDB State Water Plan, 2012)
 - Mining (includes O&G development) uses approximately 1.6% of the water used in the state
 - Use from mining expected to decrease by 2060
 - Shale play development significantly different in each region of Texas

- Local Level?
Water Use Difficult to Track

Nicot, 2013
State of the Eagle Ford Area: GROWTH

• Tremendous growth since 2008

• Texas experiencing drought conditions through this extreme growth period
Wells and County Locations

- Gonzalez
- Dimmit
- DeWitt
Region L: Water Use

- Complexity of users
- Groundwater is a major source of water in region
- Mining a small amount compared to irrigation and municipal in region
- These numbers not always correct, as we have seen

<table>
<thead>
<tr>
<th>REGION L (acre-feet)</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUNICIPAL</td>
<td>395,996</td>
<td>451,111</td>
<td>503,375</td>
<td>547,136</td>
</tr>
<tr>
<td>MANUFACTURING</td>
<td>119,310</td>
<td>132,836</td>
<td>144,801</td>
<td>156,692</td>
</tr>
<tr>
<td>MINING</td>
<td>14,524</td>
<td>15,704</td>
<td>16,454</td>
<td>17,212</td>
</tr>
<tr>
<td>STEAM ELECTRIC</td>
<td>46,560</td>
<td>104,781</td>
<td>110,537</td>
<td>116,068</td>
</tr>
<tr>
<td>LIVESTOCK</td>
<td>25,954</td>
<td>25,954</td>
<td>25,954</td>
<td>25,954</td>
</tr>
<tr>
<td>IRRIGATION</td>
<td>379,026</td>
<td>361,187</td>
<td>344,777</td>
<td>329,395</td>
</tr>
<tr>
<td>REGION L TOTAL</td>
<td>981,370</td>
<td>1,091,573</td>
<td>1,145,898</td>
<td>1,192,457</td>
</tr>
</tbody>
</table>

Source: TWDB, 2010
Region L: Water Stresses

U.S. Drought Monitor

Texas

July 16, 2013
Valid 7 a.m. EST

Drought Conditions (Percent Area)

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>D1-D4</th>
<th>D1-D4</th>
<th>D2-D4</th>
<th>D3-D4</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>0.30</td>
<td>99.70</td>
<td>64.38</td>
<td>70.99</td>
<td>33.43</td>
<td>12.07</td>
</tr>
<tr>
<td>Last Week (07/09/2013)</td>
<td>0.58</td>
<td>99.42</td>
<td>61.60</td>
<td>75.22</td>
<td>34.70</td>
<td>12.20</td>
</tr>
<tr>
<td>3 Months Ago (04/09/2013)</td>
<td>1.29</td>
<td>98.71</td>
<td>61.31</td>
<td>72.30</td>
<td>34.82</td>
<td>12.19</td>
</tr>
<tr>
<td>Start of Calendar Year (01/01/2013)</td>
<td>3.04</td>
<td>96.96</td>
<td>87.00</td>
<td>65.39</td>
<td>35.03</td>
<td>11.96</td>
</tr>
<tr>
<td>Start of Water Year (09/25/2012)</td>
<td>9.13</td>
<td>90.87</td>
<td>78.73</td>
<td>57.41</td>
<td>24.91</td>
<td>5.18</td>
</tr>
<tr>
<td>One Year Ago (07/07/2012)</td>
<td>4.49</td>
<td>95.51</td>
<td>77.23</td>
<td>39.41</td>
<td>9.08</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Intensity:
- D0 Abnormally Dry
- D1 Drought - Moderate
- D2 Drought - Severe
- D3 Drought - Extreme
- D4 Drought - Exceptional

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://droughtmonitor.unl.edu

Released Thursday, July 18, 2013
Richard Heim, National Climatic Data Center/NOAA

- Drought
- Unmet irrigation needs
- Increasing needs for more water through 2060 projections
- Increasing population
- County Level Water Usage
 - Reliance on GMA’s & GCD’s to implement some regulation on GW usage in region
 - Evergreen GCD
 - Wintergarden GCD
Eagle Ford Task Force Report (RRC, 2013)
- Movement of industry from slickwater fracs (use more water) to gel fracs (use less water) since 2007
- Average: 850 gallons of water/ft of fracture
- About 5 million gallons of water per well (or about 15 acre-feet)
- Carrizo-Wilcox Aquifer covers 80% of EF region – will most likely be able to handle load
- “Water Market” created in EF between landowners and O&G industry
- Produced water is a future source for hydraulic fracturing operations

UT study (Nicot, 2012)
- Potential O&G water use to have large local impacts
- Data set for EF less certain than other shale plays
- Est. 90% of water initially injected in EF is GW
- Est. 20% of water used is brackish
- Est. 0% recycling/reuse water
- Fresh water use in TX will decrease & strong increase in use of brackish
• Ceres Study (Freyman, 2013)
 – Over 51% of TX wells in FracFocus database were in high water stress areas
• Texas House Natural Resources Committee Interim Report (2013)
 – Projected O&G demand for water in EF is ~ 5.5 – 6.7% of total water demand in that region
 – EF had over 3,000 permits issued, where ½ of those were drilled using ~6.1 million gal/well

– Over next 20 yrs. ~25,000 new wells will be drilled in EF
– Differences between EF northern and southern sections
 • Difficult to predict and manage GW availability
– Wintergarden GCD – impact to water supply should be assessed by local scale
 • 1/3 of avg. annual recharge in Carrizo-Wilcox Aquifer required to develop EF
 • Recharge rates slower than pumping rates in historical past of aquifer
Major Assumptions for this Study

- Most water use quantities reported on FracFocus are for entire life cycle of well
 - Hydraulic fracturing makes a large component of that amount
- Water is consumed, not just withdrawn
- Most wells in region are horizontal, not vertical
Stakeholder Input:
– Oil and Gas Industry
– Policymakers and advisors (both state and federal)
– Local and other public representatives
– Water users, planners, and regulators
– Academia
– Environmental Entities
– Landowners
Methods: Trends

- “Trend” method – 5% off the top and the bottom of the data to create an average without outliers
- FracFocus
 - DeWitt, Dimmit, and Gonzales county analyses
- SkyTruth
 - 27 county analysis of average water trends for Eagle Ford
- Sky Truth vs. FracFocus
 - Difference between these two on a large scale not significant when assessing just average water use trends from the FracFocus header data
 - *Note: More in-depth analysis will be needed to if assessing beyond average trends*
Challenges to Research

• Talking to industry – variable input
• Collaboration
• Accessing information
 – Quality control of data & data validation
• FracFocus database:
 – Prior to June 2013, database validity checks not as strong as current version implements
 – Voluntary input in 2011, 2012, and part of 2013 within Texas
• Data consistency lacking due to structural database changes, voluntary submission, and ease of database maneuverability to gather research in a timely manner
Eagle Ford Region Findings

• Approximately 5 million gallons of water used per a well in region

• Although increasing average trend of water use can be seen, this is most likely due to large growth in region

• Major companies in region have variable average water use trends
County Findings

• DeWitt
 – Average use: 3.4 million gallons per well
 – Since 2011, no foreseeable trend of water use with current data

• Dimmit (most activity of the three counties)
 – Average use: 5.6 million gallons per well
 – Increases over time, could be due to other factors

• Gonzales (least activity of the three counties)
 – Average use: 3.8 million gallons per well
 – Since 2011, no foreseeable trend
Visible Trends & Other Considerations

• Most operators source the water themselves (not the service companies)
 – Usually means groundwater wells
• Disconnect between what water planners are planning for and actual mining use
 – Need to further assess
• A relatively slow industry trend towards brackish water use in area
 – Brackish water use highly variable by company

• Other things to consider in further analysis:
 – Population growth from EF eco. development
 – Changing water use demands of O&G because of recycling/reuse, market fluxes, and other factors (scenarios)
 – Other water stresses and competition (i.e. irrigation in region and GW recharge)
Policy Recommendations

- Promote tracking of sources of water used for O&G operations
- Promote transparency and ease of access to information
- Promote water plans that:
 - Account for O&G operations during drought planning, especially for water stressed localities
 - Considered scenarios of changes of water demand by O&G industry over projection time periods
 - Although mining is a small portion on a large scale, localized affects should be assessed in water stressed regions
- Promote O&G industry to have effective water management plans for every well site
 - Plans that include an assessment of water use in that area
- Promote policymakers and regulators to have more inclusive definitions in regulations and laws
Questions?

Jeanne Eckhart

Virtual Policy Fellow, American Water Works Association
Masters Candidate, The University of Texas at Austin

jeanne.eckhart@gmail.com

Adam Carpenter

Regulatory Analyst
1300 Eye St. NW; Suite 701W, Washington, DC 20005
202-628-8303
acarpenter@awwa.org
Shale Play Development

Lower 48 states shale plays

Source: Energy Information Administration based on data from various published studies. Updated: May 9, 2011
Texas Overview

• State & Local Regulators:
 – Texas Railroad Commission
 – Texas Commission on Environmental Quality
 – Groundwater Management Areas
 – Groundwater Conservation Districts

• Recent regulations:
 – RRC: Hydraulic Fracturing Disclosure Rule - O&G required to submit to Fracfocus.org (since Feb. 2013)
 – RRC: Amendment to recycling/reuse rules to make these technologies easier to utilize
Major Aquifers in Region

Edwards (Balcones Fault Zone) Aquifer

Carrizo-Wilcox Aquifer

TWDB, 2013
Water Use for Counties in 2010

<table>
<thead>
<tr>
<th>County</th>
<th>MUNICIPAL</th>
<th>MANUFACTURING</th>
<th>MINING</th>
<th>LIVESTOCK</th>
<th>IRRIGATION</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMMIT COUNTY</td>
<td>834,504,411</td>
<td></td>
<td>326,828,553</td>
<td>179,869,752</td>
<td>3,457,604,961</td>
<td>4,798,807,677</td>
</tr>
<tr>
<td>GONZALES COUNTY</td>
<td>1,338,595,908</td>
<td>782,042,400</td>
<td>9,123,828</td>
<td>1,776,865,503</td>
<td>424,909,704</td>
<td>4,331,537,343</td>
</tr>
</tbody>
</table>

Note: Data represents the water usage for specific purposes in 2010 for each county.