Water & Energy Inextricably Linked

Water needed/impacted throughout fossil-energy lifecycle

EXTRACTION
- Mining
- Drilling/Fracking
- REE Recovery
- AMD/Produced Water

PROCESSING
- Coal Cleaning
- Fuel Upgrading
- REE Recovery
- Coal Conversion

TRANSPORT
- Barge
- Coal-water Slurry
- Fresh /PW

UTILIZATION
- Cooling
- Steam cycle

ENVIRONMENTAL MANAGEMENT
- Wet Scrubbing
- CO₂ Capture/Storage
- Byproduct Disposal/Reuse
- PW Treatment
- ZLD/Water Treatment
Global Water Availability

Only ~2.5% of global water is fresh, with ~99% tied up in ice caps, locked deep in earth, contaminated, or otherwise unavailable.

- **332,500,000 mi³**: All water above, in, and on earth.
- **2,551,000 mi³**: Liquid fresh water in lakes, rivers, swamps, and groundwater.
- **22,399 mi³**: Liquid fresh water in lakes and rivers.

Mi³ = cubic miles (1.1 trillion gal); Earth: 260 billion mi³.

World Renewable Fresh Water Resources

- U.S. – 3.1 tm³
- ~8,846 m³ per capita
- m³ = 264 gallons

Total: 52.3 trillion m³ (12,547 mi³)

Water Withdrawal vs. Consumption

Important to distinguish between the two when discussing fossil energy

WITHDRAWAL (USE)
Water removed from ground or diverted from surface water source for use.

CONSUMPTION
Fraction of water withdrawn that is not returned to source, e.g., water evaporated from cooling towers.
Energy-Related U.S. Freshwater Withdrawal

Thermoelectric generation is second largest water withdrawal sector

- **Mining**, which includes oil and natural gas recovery and coal extraction, accounts for ~0.7% of total U.S. freshwater withdrawals (~55% groundwater)

- **Thermoelectric** (primarily cooling) accounts for ~34% of total freshwater withdrawals (~100% surface water)

- **Agriculture** accounts for nearly 80% of nation’s consumptive use

Total U.S. freshwater withdrawal is 389B m³/year

History of Water-for-Energy R&D at NETL

Started in early 2000s as part of NETL’s Innovations for Existing Plants Program

- Prior to 2000 NETL had a loose collection of a few water projects primarily related to former BOM AMD research absorbed by Lab

- In 2002, NETL sponsored 1st public workshop on emerging water issues and research needs associated with thermoelectric power generation

- Research focused initially on water availability and quality affecting the existing fleet of coal-fired power plants

- Since then R&D has expanded to include water issues across NETL’s carbon capture & storage, unconventional oil & gas development, rare earths recovery, and related fossil energy programs
NETL’s Water-for-Energy Research

NETL’s research has contributed to several key government water-energy reports:

- 2006 Report to Congress
- 2009 GAO Report
- 2014 DOE Report
- 2017 CRS Report
NETL’s research addresses **water availability** and **quality issues**, with many projects overlapping both areas.
NETL has established robust portfolio of intramural (in-house) and extramural water-related research projects directed at availability and quality issues.

Work is being conducted across the following areas:

- **ADVANCED COOLING TECHNOLOGY**
 - Wet, dry, and hybrid cooling

- **NON-TRADITIONAL WATER RECOVERY & USE**
 - Recovery/reuse of mine water, AMD REE recovery, coal drying, flue gas moisture recover

- **WATER TREATMENT & DETECTION TECHNOLOGY**
 - Desalination, PW treatment, advanced sensors, novel sorbents, power plant effluents; As & Se detection

- **DECISION SCIENCE & MODELING**
 - Modeling, analysis, and decision-making tools
Since 2003, NETL and its partners have developed a number of advanced tools and technologies applicable to the recovery, treatment, and reuse of water from fossil energy production and power generation.

100 MILLION+
NETL’s active water-energy research portfolio

~2-3 million/year over past 2 decades

$30+$
Active projects in water-energy research
Current Water-Energy Project Examples

Southwest Research Institute
Developing non-water-based and non CO₂-based stimulation technologies that can be used instead of, or in tandem with, water-based hydraulic fracturing fluids to reduce water usage and the volume of flowback fluids.

Southern Research Institute
Developing technology to treat CO₂ sequestration produced waters with high total dissolved solids not treatable using traditional membrane processes.

University of Kentucky and Duke Energy
Developing advanced electrocoagulation with air-based flotation for removing regulated species from FGD wastewater.

UKy-CAER Separation Modules
- Iron-based Electrocoagulation
- In-house developed zeolite membrane
- Continuous operation using CDI, UF, and NF
Rare Earth Elements Recovery

Addressing AMD and recovering rare earths

- Team from NETL, University of Pittsburgh, and Hedin Environmental Inc. assessing recovery of rare earth elements from seventeen active and passive AMD treatment sites.

- WVU and partners will design and build bench-scale process to recover REE from raw and treated AMD water and solids.
Detection & Measurement Research

Two recent university selections

• Application of Novel Analytic Method(s) to Determine Arsenic and/or Selenium Concentrations in Fly Ash Waste Streams Generated from Coal Combustion

• Characterization of Arsenic and Selenium in Coal Fly Ash to Improve Evaluations for Disposal and Reuse Potential—Duke University (Durham, NC) to investigate chemical forms of arsenic and selenium in coal fly ash and improve methods of characterization.

• Elucidating Arsenic and Selenium Speciation in Coal Fly Ashes—Georgia Tech Research Corp. (Atlanta, GA) to systematically characterize arsenic and selenium speciation within coal fly ashes, using synchrotron X-ray spectroscopic and microscopic techniques.
Water-Energy Partnership Success Stories

NETL-funded technologies in the marketplace

- **HydroFlex™** is a solvent-extraction process to treat coal ash slurries and CCR containment ponds effluents.
- Significantly reduces sulfates, metal, and other contaminants left behind by lime pretreatment
- Marketed by Winner Water Services (a Battelle Company)

- **NETL developed National Energy-Water Model prototype** for EIA’s National Energy Modeling System (NEMS*) that forecasts water needs for power generation under various demand and supply scenarios.

- **AltelaRain®** is a modular water distillation/decontamination system that treats highly challenging fluids such as produced water.

- **The SPX ClearSky™ Plume-Abatement System** achieved nearly 20% water recovery during field testing at San Yuan Generating Station.
- SPX Cooling Technologies has more than 80 plume-abatement installations worldwide.

NEMS is a computer-based energy-economy modeling system managed by DOE’s Energy Information Agency
Recent Water-Energy Funding Announcements

Energy-Water Desalination Hub

Establish an Energy Innovation Hub in Energy-Water Desalination to accelerate transformational advances in science and engineering focused on reducing the energy and cost requirements of desalination to provide clean and safe water

5/7/19 – Closing Date

Low-Cost, Efficient Treatment Technologies for Produced Water

Accelerate development of potential process modifications, combinations or enhancements, or altogether new alternative processes and technologies—including techno-economic analyses—that could achieve significant reduction in quantity of produced water injected underground.

07/10/19 – Closing Date

Important components of DOE’s Water Security Grand Challenge

https://www.energy.gov/eere/water-security-grand-challenge
Water Use and Carbon Capture & Storage

Opportunities to treat and reuse extracted water from CO₂ storage

- Water required to operate carbon capture technologies such as amine-based systems.

- Water can also be extracted during geological CO₂ storage to manage subsurface pressure.

- Can we reduce parasitic power (reduce cooling demand) and water needed for capture?

- Can “extracted water” from CO₂ storage be recovered, treated, and reused?
Brine Extraction Storage Test (BEST)
Managing subsurface pressure & resulting extracted water from CO₂ storage

• R&D directed at managing CO₂ plumes and related subsurface pressure impacts of storage in saline formations that could result in fluid displacement

• Brine extraction wells are one approach to manage formation pressure

• Brine Extraction Storage Test (BEST) program conducting validation testing of brine injection (surrogate for CO₂) and extraction and brine treatment

• BEST facilities located in North Dakota and Florida

• EERC is seeking companies to pilot-test water treatment technologies at the ND BEST facility
Future Potential Research Opportunities
Applying “big data” to water-energy issues

• How can machine learning/artificial intelligence be applied in treatment and management of water in fossil energy production and use?
 • Produced water/flowback water treatment
 • Brine extraction and treatment from CO₂ storage
 • Power plant cooling water management
 • Effluent treatment from power generation
 • Management of discharge from coal ash impoundments
 • Treatment of rare earth recovery effluents

Energy Sect. Perry visited NETL on August 12 to discuss Lab’s AI/ML capabilities
Thomas J. Feeley, III

Strategic Partnerships Water-Energy Lead

thomas.feeley@netl.doe.gov

Questions?

Get Social With Us At: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory