Irrigation with Produced Water in Texas Beneficial Use Case Study

Lloyd H. Hetrick
February 24, 2016

GWPC Conference “Aquifer Management and Underground Injection”

http://www.gwpc.org/events/2016-uic-conference
Irrigation with Produced Water in Texas

Outline

I. Management Options for Produced Water US onshore
II. Givens
III. Regulatory Landscape
IV. Site Assessment and Permitting Process
V. Irrigation System Design
VI. Monitoring for Soil Chemistry
VII. Baseline Testing Results and Permit Limits
VIII. Additional Assurances
IX. Snapshot at 8 months and 500k bbls irrigated
X. Snapshot at 15 months and 1M bbls irrigated
XI. Lessons Learned
I. Management Options for Produced Water
US onshore - in the modern era

Option A

Class II UIC disposal wells

Option B

Treatment and Reuse in Operations

......... aside from CBM operations

Option C varies depending on many things
II. Givens

- Legacy oil and gas area with multiple producing formations, plus resource play potential
- No groundwater and very little surface water in most of the county with an ongoing drought
- Original plan was to use produced water for developing our new resource plays
II. Givens (continued)

- One particular producing zone from legacy ops had very fresh water chemistry
 - 1,500 to 3,500 mg/l TDS
 - Lined storage pit was an aquarium
- Things changed in 2013, our resource play did not work
III. Regulatory Landscape

- Federal and State jurisdiction if this is a NPDES discharge, or spills and violates water quality standards
- Federal jurisdiction if it creates a wetland or enters Waters of the United States “WOTUS”
- No “off the shelf” State beneficial use permit, closest was RRC land farming for muds and cuttings
- This became a science project considering
 - Topography, proximity to wetlands and WOTUS
 - Soil characterization and baseline chemistry
 - Soil loading and native plant tolerance predictions
IV. Site Assessment and Permitting Process

- Topography, WOTUS, Soil Characterization, Plant and Animal Survey
IV. Site Assessment and Permitting Process

- Site Assessment led to specific area selection and system design
V. Irrigation System Design

- Pump, Filter, Underground Pipeline to the Irrigation Area, then PVC Distribution System
VI. Monitoring for Soil Chemistry

- One Acre Monitoring Grid, all Sampling Locations Recorded and Tracked

Approx 60 acre site

Sample each acre then composite into “quadrants” of 5 for both shallow zone (0”-12”) and deep (12”-24”) every quarter, analyze for 11 parameters, if an exceedance then isolate the quadrant and increase sampling to monthly
VII. Baseline Testing Results and Permit Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Shallow Soils -0” to -12”</th>
<th>Deep Soils -12” to -24”</th>
<th>RRC Permit Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>Chloride (Total)</td>
<td>ND</td>
<td>ND</td>
<td>10</td>
</tr>
<tr>
<td>Chloride (Saturation Extract, mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Arsenic</td>
<td>4.9</td>
<td>14.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Barium</td>
<td>170</td>
<td>770</td>
<td>220</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.17</td>
<td>0.33</td>
<td>0.20</td>
</tr>
<tr>
<td>Calcium (Saturation Extract, mg/L)</td>
<td>120</td>
<td>220</td>
<td>66</td>
</tr>
<tr>
<td>Chromium</td>
<td>3.6</td>
<td>24</td>
<td>8.9</td>
</tr>
<tr>
<td>Exchangeable Sodium Percentage</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lead</td>
<td>5.3</td>
<td>52</td>
<td>3.2</td>
</tr>
<tr>
<td>Magnesium (Saturation Extract, mg/L)</td>
<td>2.3</td>
<td>5.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Mercury</td>
<td>ND</td>
<td>0.096</td>
<td>ND</td>
</tr>
<tr>
<td>% Moisture</td>
<td>9.4</td>
<td>31</td>
<td>8.3</td>
</tr>
<tr>
<td>% Solids</td>
<td>69</td>
<td>91</td>
<td>67</td>
</tr>
<tr>
<td>Selenium</td>
<td>ND</td>
<td>2.6</td>
<td>ND</td>
</tr>
<tr>
<td>Silver</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sodium (Saturation Extract, mg/L)</td>
<td>2.7</td>
<td>7.3</td>
<td>20</td>
</tr>
<tr>
<td>Sodium Adsorption Ratio</td>
<td>ND</td>
<td>0.17</td>
<td>ND</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>21.1</td>
<td>21.3</td>
<td>21.1</td>
</tr>
<tr>
<td>Specific Conductance (Sat Extract, mmho/cm)</td>
<td>0.55</td>
<td>1.10</td>
<td>0.61</td>
</tr>
<tr>
<td>Field pH (pH units)</td>
<td>7.11</td>
<td>8.64</td>
<td>7.35</td>
</tr>
<tr>
<td>Field PID (ppm)</td>
<td>0</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td>Field Conductivity (mmho/cm)</td>
<td>0</td>
<td>0.6</td>
<td>ND</td>
</tr>
<tr>
<td>TPH (C6-C12)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>TPH (C12-C28)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>TPH (C28-C40)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>TPH (C6-C40 Summary)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Metal concentrations are total metal and units are (mg/kg) unless otherwise noted; ND – Non Detect
VIII. Additional Assurances

- No discharge or run-off by constructing a perimeter berm

- Prove the absence of groundwater by records search and (later) by a 100’ test well

- Had program logic in the control system for max daily rate of 10,000 bbls

- Had program logic in control system to not operate at night or during rain
IX. Snapshot at 8 months and 500k bbls

pre operations

approx 8 months and 500,000 bbls later
X. Snapshot at 15 months and 1M bbls

pre operations

approx 15 months and 1M bbls later (drone pic taken on a hazy day)
XI. Lessons Learned

- Things that went well:
 - Extensive pre permitting field reconnaissance work and agency interaction
 - Baseline soil sampling that matched the permitting protocols
 - Field monitoring each quarter with same field biologist and hydrogeologist
 - Drone pics were very useful for internal and external communications

- Things that we would improve on:
 - Additional soil sampling after the exact site was selected to establish a better range of soil chemistry and lab method variability
 - Take drone pics during same time of day, perspective, and hopefully sunny conditions