Can the Ogallala Aquifer Sustain Long Term Ground Water Production?

Ground Water Protection Council 2014
Seattle, Washington

Jay Lazarus, Jim Riesterer, P.G. and Elke Naumburg, PhD
Glorieta Geoscience, Inc.
PO Box 5727
Santa Fe, NM 87502
(505) 983-5446
www.glorietageo.com
TOPICS

• High Plains (Ogallala) Aquifer
• Design of Efficient, High Capacity Wells
• Water Conservation
• Future Ground Water Development
High Plains Aquifer (Ogallala)

- Largest Aquifer in U.S.
- 111.8 million acres (175,000 mi²)
- Some development in 1930s & 1940s
- Increase from 2.1M irrigated acres in 1949 to 13.7M acres in 1980
- 15.5 M acres in 2005
* Ogallala wells typically produce between 200-500 gpm, some 1000+ gpm; some <50 gpm

* Generally good quality water (TDS<1000 mg/l)

* Aquifer is being ‘mined’ by intense use
Water level changes, 1950-2011

Source: McGuire, 2012
Saturated Thickness changes, 1950-2011

Source: McGuire, 2011
Decrease in Saturation Means

- Existing wells lose production
- Increased pumping costs with depth
- Less water available for new wells
- New wells must be deeper (if possible)
- Water quality degrades (increased salinity)
- Abandoned farms
- Increased regulations
Ogallala Aquifer

TOPICS
• High Plains (Ogallala) Aquifer
• Design of Efficient, High Capacity Wells
• Water Conservation
• Future Ground Water Development
Well Drilling
Types of Wells

- Domestic
- Municipal
- Commercial
- Irrigation
Types of screen

- Torch cut
- Plasma cut
- Saw cut (PVC)
- Mill slot
- Wire wrapped
- Louvered

Photo from johnsonscreens.com
Well Development

- Removes drilling fluid from filter pack and formation (increases production)
- Removes fines from filter pack, properly grades filter pack and formation for long term sand-free production

Photo from Driscoll, 1986
Why is Well Efficiency Important?

BENEFITS OF HIGH WELL EFFICIENCY

* Energy cost savings
* An efficient, sand-free well will save a farmer significant money on energy costs to produce the water and the well and pump lifetime will be extended significantly.

PUMPS FAIL

* When you need it the most.....
* During the hottest time of the irrigation season.....
* When the pump contractor is servicing a municipal well for a bigger client.....
Ogallala Aquifer

TOPICS

• High Plains (Ogallala) Aquifer
• Design of Efficient, High Capacity Wells
• Water Conservation
• Future Ground Water Development
Water Conservation

Average daily parlor discharge (gal)

Water conservation in milking parlors, A Tale of 3 Dairies
Water Conservation
Consequences of Water Waste

- Decreased aquifer life
- Decreased pump life
- Decreased well life
- Increased cost of well replacement (deeper wells, deeper pump setting, more HP required)
- Increased energy costs
- Increased water rights acquisition cost
- Green water lagoons must be larger
- More green water to manage
Ogallala Aquifer

TOPICS

• High Plains (Ogallala) Aquifer
• Design of Efficient, High Capacity Wells
• Water Conservation
• Future Ground Water Development
Ogallala Options – Moving Forward

- Conservation
 - Change to less water intensive crops
 - Utilize water saving technologies (center pivots, sub-surface drip, soil moisture monitoring, etc.)
 - Eliminate water waste in barns
- Ogallala has recovered in areas of CRP lands
- Ogallala Initiative – NRCS paying farmers not to pump
- Explore deeper aquifer options
Dockum Aquifer (AKA Santa Rosa)

- Encompasses 96,000 mi²
- Underlies Ogallala aquifer, separated by low permeability shales (redbeds)
- Variable thickness (0 to >2000 ft thick)
- Variable yield (<40 to >2000 gpm)
- Variable water quality (<500 to >10,000 mg/L TDS)

Map from Bradley and Kalaswad (2003)
Dockum Aquifer (cont.)

- Relatively few wells
- Even fewer wells with good data (at least in public record)
- Some Municipal wells in TX (Hereford, Tulia, Happy)
- Recharge is limited (isotope data suggest 20,000 to 30,000 year old water)
Prospecting for low TDS water
Higher drilling, completion and production costs
Reduce risk by drilling slim hole
 * Geophysics
 * Lithology
 * Zone testing for water quality
Production may not warrant large diameter casing (>12 in casing)
Minimum $250,000 for production well
Where Do We Go From Here?

- Continue Ogallala production but manage pumping to prolong aquifer life
- High efficiency, smaller diameter wells specifically designed to a declining Ogallala water table can reduce local drawdown and require less energy to pump ground water
- Conservation is most effective way to reduce water use/cost
- Budget $$$ to prospect in Dockum
- Blend Ogallala and Dockum water to meet production and water quality needs
Questions/Discussion

Glorieta Geoscience, Inc.
PO Box 5727
Santa Fe, NM 87502
(505) 983-5446
www.glorietageo.com