Deep Shale Natural Gas: Abundant, Affordable, and Surprisingly Water Efficient

Water/Energy Sustainability Symposium
2009 GWPC Annual Forum
Salt Lake City, Utah

Matthew E. Mantell, P.E.
Corporate Environmental Engineer
Presentation Overview

- Chesapeake Energy Operations
- Keys to Shale Gas Development
- Advantages of Shale Gas
- Water / Energy Nexus
- Water Use Efficiency by Shale Gas Play
- Raw Fuel Source Water Use Comparison
- Water Use Efficiency of Power Plants
- Water Intensity of Transportation Fuels
- Closing Thoughts
Chesapeake Energy Operating Areas
Keys to Deep Shale Natural Gas Development

● 1st Key: Horizontal Drilling

– Begins same as vertical well, but turns just above target reservoir zone

– Exposes significantly more reservoir rock to well bore surface versus a traditional vertical well

– Major advantage is fewer wells drilled to access same reservoir volume
Keys to Deep Shale Natural Gas Development

● **2nd Key: Hydraulic Fracturing**

 – Process of creating artificial cracks (fractures) in shale formations deep underground

 – Water with special high viscosity additives is injected under high pressure to fracture the rock

 – A “propping agent” (usually sand carried by the water) is pumped into the fractures to keep them from closing when pumping pressure is released.

 – Natural gas can then flow freely from the rock pores to a production well
Advantages of Deep Shale Natural Gas

- **Abundant in U.S.**
 - Haynesville Shale: 250 TCF (11 years U.S. supply)
 - Marcellus Shale: 50 TCF (26 months U.S. supply)
 - Barnett Shale: 30 TCF (16 months U.S. supply)
 - Fayetteville Shale: 20 TCF (10 months U.S. supply)

- **Affordable**
 - Natural Gas Price of $3 per MMBTU equivalent to $17.50 BBL Crude
 - Current Crude Price around $70 BBL

- **Emission Friendly**
 - Half the Carbon Dioxide of Coal
 - 30% the Carbon Dioxide of Gasoline
 - No Mercury or PM Emissions

- **Most Diversely Used Fuel Source**
 - Clean Burning Power Plants
 - Directly Use in Homes
 - Industrial Processes
 - Manufacturing of Products
 - Transportation Fuel (CNG)
The Water / Energy Nexus

● “Water is Essential for Energy Resource Development”
 – Fuel Extraction
 – Fuel Processing
 – Power Generation Cooling

● “Energy Resources are Needed for Water”
 – Development (raw water pumping)
 – Processing (treatment)
 – Distribution (potable water pumping)

● “Balance” or “Nexus” is Critical but Often Overlooked when evaluating Energy Resources
 – Many discussions on air quality and surface pollution impacts
 – Limited discussion on water availability
 – Improve One → Improve the Other
Water Use Efficiency of the Four Major Chesapeake Deep Shale Natural Gas Plays

<table>
<thead>
<tr>
<th>Shale Play</th>
<th>Average Water Use Per Well 1</th>
<th>CHK Est. Avg. Natural Gas Production Over Well Lifetime 2</th>
<th>Natural Gas Production Per Well (based on 1,028 BTU per Cubic Feet) 3</th>
<th>Water Use Efficiency (in gallons per MMBTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haynesville</td>
<td>4 million gallons</td>
<td>6.5 billion cubic feet</td>
<td>6.682 trillion BTU</td>
<td>0.60</td>
</tr>
<tr>
<td>Marcellus</td>
<td>4.1 million gallons</td>
<td>3.75 billion cubic feet</td>
<td>3.855 trillion BTU</td>
<td>1.06</td>
</tr>
<tr>
<td>Barnett</td>
<td>3.4 million gallons</td>
<td>2.65 billion cubic feet</td>
<td>2.724 trillion BTU</td>
<td>1.25</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>4 million gallons</td>
<td>2.2 billion cubic feet</td>
<td>2.262 trillion BTU</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Source: 1Chesapeake Energy 2009b, 2Chesapeake Energy 2009c, 3USDOE 2007

“BTU”: British Thermal Unit
“MMBTU”: Million British Thermal Units
Water Use Efficiency of the Four Major Chesapeake Deep Shale Natural Gas Plays

<table>
<thead>
<tr>
<th>Shale Play</th>
<th>Average Water Use Per Well ¹</th>
<th>CHK Est. Avg. Natural Gas Production Over Well Lifetime ²</th>
<th>Natural Gas Production Per Well (based on 1,028 BTU per Cubic Feet) ³</th>
<th>Water Use Efficiency (in gallons per MMBTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haynesville</td>
<td>4 million gallons</td>
<td>6.5 billion cubic feet</td>
<td>6.682 trillion BTU</td>
<td>0.60</td>
</tr>
<tr>
<td>Marcellus</td>
<td>4.1 million gallons</td>
<td>3.75 billion cubic feet</td>
<td>3.855 trillion BTU</td>
<td>1.06</td>
</tr>
<tr>
<td>Barnett</td>
<td>3.4 million gallons</td>
<td>2.65 billion cubic feet</td>
<td>2.724 trillion BTU</td>
<td>1.25</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>4 million gallons</td>
<td>2.2 billion cubic feet</td>
<td>2.262 trillion BTU</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Source: ¹Chesapeake Energy 2009b, ²Chesapeake Energy 2009c, ³USDOE 2007

“BTU”: British Thermal Unit
“MMBTU”: Million British Thermal Units
Raw Fuel Source Water Use Efficiency

<table>
<thead>
<tr>
<th>Energy Resource</th>
<th>Range of Gallons of Water Used per MMBTU of Energy Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Chesapeake Deep Shale Natural Gas *</td>
<td>0.60 – 1.80</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1 – 3</td>
</tr>
<tr>
<td>Coal (no slurry transport)</td>
<td></td>
</tr>
<tr>
<td>(with slurry transport)</td>
<td>2 – 8</td>
</tr>
<tr>
<td></td>
<td>13 – 32</td>
</tr>
<tr>
<td>Nuclear (processed uranium ready to use in plant)</td>
<td>8 – 14</td>
</tr>
<tr>
<td>Conventional Oil</td>
<td>8 – 20</td>
</tr>
<tr>
<td>Synfuel - Coal Gasification</td>
<td>11 – 26</td>
</tr>
<tr>
<td>Oil Shale Petroleum</td>
<td>22 – 56</td>
</tr>
<tr>
<td>Tar Sands Petroleum</td>
<td>27 – 68</td>
</tr>
<tr>
<td>Synfuel - Fisher Tropsch (Coal)</td>
<td>41 – 60</td>
</tr>
<tr>
<td>Enhanced Oil Recovery (EOR)</td>
<td>21 – 2,500</td>
</tr>
<tr>
<td>Fuel Ethanol (from irrigated corn)</td>
<td>2,510 – 29,100</td>
</tr>
<tr>
<td>Biodiesel (from irrigated soy)</td>
<td>14,000 – 75,000</td>
</tr>
</tbody>
</table>

Source: USDOE 2006 (other than CHK data)

Does not include processing which can add from 0 - 2 Gal per MMBTU
Raw Fuel Source Water Use Efficiency

<table>
<thead>
<tr>
<th>Energy Resource</th>
<th>Range of Gallons of Water Used per MMBTU of Energy Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chesapeake Deep Shale Natural Gas *</td>
<td>0.60 – 1.80</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1 – 3</td>
</tr>
<tr>
<td>Coal (no slurry transport)</td>
<td>2 – 8</td>
</tr>
<tr>
<td>(with slurry transport)</td>
<td>13 – 32</td>
</tr>
<tr>
<td>Nuclear (processed uranium ready to use in plant)</td>
<td>8 – 14</td>
</tr>
<tr>
<td>Conventional Oil</td>
<td>8 – 20</td>
</tr>
<tr>
<td>Synfuel - Coal Gasification</td>
<td>11 – 26</td>
</tr>
<tr>
<td>Oil Shale Petroleum</td>
<td>22 – 56</td>
</tr>
<tr>
<td>Tar Sands Petroleum</td>
<td>27 – 68</td>
</tr>
<tr>
<td>Synfuel - Fisher Tropsch (Coal)</td>
<td>41 – 60</td>
</tr>
<tr>
<td>Enhanced Oil Recovery (EOR)</td>
<td>21 – 2,500</td>
</tr>
<tr>
<td>Fuel Ethanol (from irrigated corn)</td>
<td>2,510 – 29,100</td>
</tr>
<tr>
<td>Biodiesel (from irrigated soy)</td>
<td>14,000 – 75,000</td>
</tr>
</tbody>
</table>

Source: USDOE 2006 (other than CHK data)

Does not include processing which can add from 0 - 2 Gal per MMBTU
Raw Fuel Source Water Use Efficiency: Wind and Solar Notes

- Solar and Wind Power Not Included in Previous Table
 - Require virtually no water for processing
 - Therefore, “most water efficient”
 - Currently not “baseload” worthy
 - Wind: ½ of 1% of all U.S. Energy in 2008
 - Solar: 1/10th of 1% of all U.S. Energy in 2008
Raw Fuel Source Water Use Efficiency: Geography / Location

- Geography Plays Important Role in Fuel Source Water Efficiency
 - Values in table are location independent
 - Energy demands of fuel transport not considered
 - If considered:
 - Locally produced fuels would be given higher “value”
 - Imported fuels less water efficient → lower “value”
 » Foreign Oil, Alaskan Oil and Gas, Off-Shore Oil and Gas
Typical Efficiencies of Thermoelectric Power Plants

1. **Natural Gas Combined Cycle**
 - 14% Flue Gas
 - 36% Cooling Water
 - 50% Electricity
 - 100% Fuel

2. **Coal / Biomass Steam Turbine**
 - 33% Flue Gas
 - 33% Cooling Water
 - 33% Electricity
 - 100% Fuel

3. **SynGas (Coal) Combined Cycle**
 - 15% Flue Gas
 - 35% Cooling Water
 - 50% Electricity
 - 100% Fuel

4. **Nuclear Steam Turbine**
 - 0% Flue Gas
 - 67% Cooling Water
 - 33% Electricity
 - 100% Fuel

5. **Concentrating Solar**
 - 33% Cooling Water
 - 15% Electricity
 - 100% Fuel
 - 52% Unconverted Solar

Source: Adapted from Stillwell et al. 2009
Power Generation Cooling and Water Use

- **Water Withdrawal**: surface or ground water physically removed from a source for use in a power plant.

- **Water Consumption**: surface or ground water “lost” in the power generating process due to evaporation (no discharge)

Water Withdrawal and Consumption are directly proportional to:

1. Power plant efficiency,
2. Fuel combustion temperature, and
3. Flue gas emissions
Power Generation Cooling and Water Use

- **Open Loop Cooling**: given volume of water used only once through the cooling process. Water is discharged to receiving water body immediately after use.

- **Closed Loop Cooling**: given volume of water constantly recycled through cooling process (with little or no discharge)
Closed-Loop Cooling Power Generation Water Use Efficiency

<table>
<thead>
<tr>
<th>Power Plant Type</th>
<th>Average Gallons of Water Consumed in Power Plant per MWh of Electricity Produced</th>
<th>Average Gallons of Water Withdrawal in Power Plant per MWh of Electricity Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combined Cycle (NGCC)</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>Integrated Gasification (SynGas from Coal), Combined Cycle (IGCC)</td>
<td>330</td>
<td>350</td>
</tr>
<tr>
<td>Coal / Biomass Steam Turbine</td>
<td>420</td>
<td>480</td>
</tr>
<tr>
<td>Concentrating Solar</td>
<td>750</td>
<td>760</td>
</tr>
<tr>
<td>Nuclear Steam Turbine</td>
<td>590</td>
<td>830</td>
</tr>
<tr>
<td>Geothermal Steam</td>
<td>1,400</td>
<td>2,050</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>4,500*</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Due to direct evaporation from multi-use holding reservoir

Note: Wind turbines and photovoltaic solar panels have negligible water demands

MWh: Mega-Watt-Hour

Source: Adapted from Hightower 2008
Closed-Loop Cooling Power Generation Water Use Efficiency

<table>
<thead>
<tr>
<th>Power Plant Type</th>
<th>Average Gallons of Water Consumed in Power Plant per MWh of Electricity Produced</th>
<th>Average Gallons of Water Withdrawal in Power Plant per MWh of Electricity Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combined Cycle (NGCC)</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>Integrated Gasification (SynGas from Coal), Combined Cycle (IGCC)</td>
<td>330</td>
<td>350</td>
</tr>
<tr>
<td>Coal / Biomass Steam Turbine</td>
<td>420</td>
<td>480</td>
</tr>
<tr>
<td>Concentrating Solar</td>
<td>750</td>
<td>760</td>
</tr>
<tr>
<td>Nuclear Steam Turbine</td>
<td>590</td>
<td>830</td>
</tr>
<tr>
<td>Geothermal Steam</td>
<td>1,400</td>
<td>2,050</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>4,500*</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Source: Adapted from Hightower 2008

*Due to direct evaporation from multi-use holding reservoir
Note: Wind turbines and photovoltaic solar panels have negligible water demands
MWh: Mega-Watt-Hour
Transportation Fuels and Water Use

● Conventional Petroleum and Gasoline Dominate U.S. Market
 – 97% of all fuels
 – Some contain 10% ethanol blend to reduce air emissions

● Currently Looking at “Unconventional” and “Alternative” Fuels
 – Non-ConventionaLiquid Fossil Fuels (fuels from coal, oil shale, tar sands)
 – Biofuels (ethanol, biodiesel)
 – Compressed Natural Gas
 – Hydrogen (carrier source)

● Major “Push” to Electric Vehicles and Plug-In Hybrids
 – Major focus of research and development
 – Perceived to be “green” (but how is electricity generated?)
 – Increase in water use “overlooked”
Water Intensity of Transportation Fuels

- Ethanol from Irrigated Corn Grain: 2,800 gallons
- Ethanol from Irrigated Corn Stover: 1,900 gallons
- Biodiesel from Irrigated Soybeans: 800 gallons
- Hydrogen via Electrolysis: 42 gallons
- Syn Diesel from Coal: 38.5 gallons
- Tar Sands Gasoline: 33 gallons
- Electric Vehicle*: 32 gallons
- Syn Diesel from Natural Gas: 27.5 gallons
- Oil Shale Gasoline: 26 gallons
- Ethanol from Non-Irrigated Corn Grain: 25 gallons
- Ethanol from Non-Irrigated Corn Stover: 25 gallons
- Plug In Hybrid Electric Vehicle*: 24 gallons
- Gasoline: 10.5 gallons
- Diesel: 8 gallons
- CNG using Electricity for Compression: 6.5 gallons
- Hydrogen from Natural Gas: 6 gallons
- CNG using NG Generator for Compression: 3 gallons
- Biodiesel from Non-Irrigated Soybeans: 1.5 gallons

"CNG": Compressed Natural Gas
Source: Adapted from King and Webber 2008a;
*Adapted from King and Webber 2008b
Closing Thoughts

● **Deep Shale Natural Gas**
 – Uses water primarily during drilling and stimulation
 – Produces tremendous amount of energy over the lifespan of a well

● **Raw Fuel Source Water Use Efficiency**
 – Natural Gas (including Shale Gas), Wind, and Solar are most efficient

● **Power Generation Water Use Efficiency**
 – Natural Gas Combined Cycle (NGCC) Plants are among most efficient

● **Transportation Fuel Water Use Efficiency**
 – Conventional fuels are relatively water efficient
 – Natural Gas based fuels are even better

● **Location is Important**
 – Tremendous amounts of water and energy used to transport people and products
 – When fuel is imported, there are unintended environmental impacts
Questions?

Matthew E. Mantell, P.E.
Corporate Environmental Engineer
matt.mantell@chk.com

www.chk.com
Open-Loop Cooling Power Generation Water Use Efficiency

<table>
<thead>
<tr>
<th>Power Plant Type</th>
<th>AVG Gallons of Water Consumed in Power Plant (per MWh of Electricity Produced)</th>
<th>AVG Gallons of Water Withdrawal in Power Plant (per MWh of Electricity Produced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combined Cycle (NGCC)</td>
<td>110</td>
<td>13,760</td>
</tr>
<tr>
<td>Coal / Biomass Steam Turbine</td>
<td>280</td>
<td>35,030</td>
</tr>
<tr>
<td>Nuclear Steam Turbine</td>
<td>430</td>
<td>42,530</td>
</tr>
</tbody>
</table>

Source: Adapted from Hightower 2008