GROUND WATER PROTECTION COUNCIL

2016 UIC CONFERENCE – DENVER, COLORADO

TREATING PRODUCED WATER FOR BENEFICIAL USE – CURRENT CHALLENGES AND POTENTIAL FUTURE ADVANCES

RICK McCURDY

MANAGER – CHEMICALS AND WATER RECLAMATION
AGENDA

• Current Technologies for Treating Produced Water

• Issues With Current Technologies

• Potential Alternatives on the Horizon
CURRENT TECHNOLOGIES

• REVERSE OSMOSIS (RO)
• VACUUM DISTILLATION / MECHANICAL VAPOR RECOMPRESSION (VD/MVR)
• CRYSTALLIZATION (ZERO LIQUID DISCHARGE - ZLD)
CURRENT TECHNOLOGIES

• Reverse Osmosis
 – Uses pressure to push water molecules through a permeable membrane
 – Requires extensive pretreatment, but removes all minerals, salts and metals
 – Easy to foul media (hydrocarbons and bacteria are troublesome)
 – Inefficient with brines exceeding 50K total dissolved solids (TDS)

Photo courtesy of R. McCurdy

www.degremont-technologies.com
CURRENT TECHNOLOGIES

• Vacuum Distillation / Mechanical Vapor Recompression
 - Requires pretreatment to remove hydrocarbons, total suspended solids (TSS), iron and divalent cations
 - Energy intensive
 - High temperature systems require corrosion resistant alloys ($$)
 - Usually has a clean, concentrated brine stream that can be used as a “kill” fluid

Photo copyright 212 Resources

Diagram copyright Fountain Quail

Photo copyright GE Corporation
BRINE CONCENTRATOR AND CRYSTALLIZER

Brine Concentrator

Brine Crystallizer

www.veoliawaterstna.com
GENERATION OF USEABLE BY-PRODUCTS

Uses

Barium Sulfate (BaSO\(_4\))
- Preparation of drilling mud, glass manufacturing, rubber manufacturing, production of pigments

Sodium Chloride (NaCl)
- Feed stock for chlor-alkali industry, chemical industry, roadway deicing

Calcium Chloride (CaCl\(_2\))
- Preparation of drilling mud, completion fluid, workover fluid
ISSUES WITH CURRENT TECHNOLOGIES

- ECONOMICS
- POWER DEMAND
- WASTE / PRODUCT GENERATION
ECONOMICS

$/BBL

Total Dissolved Solids

RO

VD/MVR

Crystallization

50K 100K 150K 200K 250K 300K
POWER DEMAND

- VD/MVR & ZLD plants typically need 6-8 kwh / bbl water processed
- 50,000 bpd plant would use 109.5-146.0 gwh/year
- Avg household consumption is 10,932 kwh/year\(^1\)
- Avg household in Oklahoma has 2.55 people\(^2\)
- A single 50,000 bpd plant will have the energy demand of a city with a population of 25,000-34,000 people!

\(^1\) U.S. Energy Information Administration (2014)
\(^2\) U.S. Census 2010
WASTE / PRODUCT GENERATION

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Products and waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filter Cake, (tons/day)</td>
</tr>
<tr>
<td>bbl/day</td>
<td>MGD</td>
</tr>
<tr>
<td>5,000</td>
<td>0.2</td>
</tr>
<tr>
<td>50,000</td>
<td>2.1</td>
</tr>
<tr>
<td>100,000</td>
<td>4.2</td>
</tr>
<tr>
<td>200,000</td>
<td>8.4</td>
</tr>
<tr>
<td>300,000</td>
<td>12.5</td>
</tr>
</tbody>
</table>

1 Numbers based off of typical composition of a produced water that is relatively high in salinity with a moderate level of hardness.
POTENTIAL ALTERNATIVES ON THE HORIZON

• ACID BASE GENERATION
• MEMBRANE DISTILLATION
• PLASMA ARC GENERATION
• CAPACITIVE DEIONIZATION
ACID BASE GENERATION PROCESS SCHEME

Produced water

Pretreatment

- Removal of hydrocarbons, suspended solids, hardness ions (Ca, Mg) and metals (Ba, Sr)

Bipolar membrane electrodialysis (BMED) or similar process

- Generation of acid (HCl), base (NaOH) and biocide
EXAMPLE OF ACID BASE GENERATION PROCESS

<table>
<thead>
<tr>
<th>Uses</th>
<th>Hydrochloric Acid (HCl)</th>
<th>Sodium Hydroxide (NaOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New well stimulation,</td>
<td>• New well stimulation, restore permeability of existing wells, removing scale, corrosion by-products and cement debris</td>
<td>• Drilling fluids, petroleum production, refineries, chemical industry</td>
</tr>
<tr>
<td>restore permeability of</td>
<td>from wellbores, chemical industry</td>
<td></td>
</tr>
<tr>
<td>existing wells, removing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scale, corrosion by-products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and cement debris from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wellbores, chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BY-PRODUCTS GENERATED

By-products generated for a 5,000 bbl/day plant

<table>
<thead>
<tr>
<th>Products</th>
<th>bbl/day</th>
<th>Gal/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>15% HCl</td>
<td>1,800</td>
<td>75,600</td>
</tr>
<tr>
<td>25% NaOH</td>
<td>960</td>
<td>40,320</td>
</tr>
<tr>
<td>Anolyte biocide</td>
<td>250</td>
<td>10,500</td>
</tr>
<tr>
<td>Degreaser</td>
<td>50</td>
<td>2,100</td>
</tr>
</tbody>
</table>

- One business model would allow an operator to provide brine free of charge and then take back generated products at a discount to current market pricing. Products not utilized by local oil and gas industry would be marketed to other commodity users.

- Approximately, 15 tons of solids/day will be generated in the pretreatment process.
ACID BASE GENERATION

• Pros
 > Generate products regularly used by Oil and Gas industry
 - HCl, NaOH, biocide
 > Plant easily expandable from 5,000-50,000 bpd
 > Can co-operate with other brine-mining operations such as iodine extraction

• Cons
 > Energy intensive (2-4 kwh per bbl treated)
 > Market for generated products?
 - A small 5,000 bpd plant will produce:
 - 75,000 gal 15% HCl
 - 40,000 gal 25% NaOH
 - 10,000 gal oxidizing biocide EACH DAY!
MEMBRANE DISTILLATION

http://www.memsys.eu/products.html
MEMBRANE DISTILLATION

• Pros
 > Membrane is resistant to fouling
 - only pretreatment is oil removal
 - Hardness and bacteria have not shown to be troublesome
 > Low energy demand
 > Can handle high TDS brines
 > Can utilize waste heat sources
 > Potential to provide recovery of a distillation unit at the cost of an RO

• Cons
 > Oil can foul membranes
 > While more economical than a VD/MVR process and much less energy intensive – still cannot compete with majority of Class II SWD options; however, waste heat can swing the pendulum
PLASMA ARC

Plasma spark in water

http://www.plasmawhirl.com/index.php

http://drexel.edu/plasma/plasmagallery/plasma-photos/

US Patent 7,422,695
PLASMA ARC

• Pros

> Can handle any TDS water with minimal pretreatment requirements.

> Mobile treatment units that can be installed at well pads.

> Planned designs for systems from 1,500 – 10,000 bbl/day capacity

• Cons

> Insufficient data on air emissions

> Mineral scale deposition potential has not been fully vetted during through field pilots

> Cyclonic nature will require upstream removal of abrasive solids (e.g. proppant, sand, iron)

> Energy demand not vetted through field scale pilots
CAPACITIVE DEIONIZATION

http://pubs.rsc.org/en/content/articlelanding/2013/cp/c3cp50514f#!divAbstract

http://netl.doe.gov
CAPACITIVE DEIONIZATION

• **Pros**
 > Can handle high TDS water (~250k) with minimal pretreatment requirements.
 > Minimal pressure treatment system
 > No fouling
 - polarity reversal allows for self-cleaning

• **Cons**
 > Current systems inefficient at salt removal requiring multiple passes
 > Current systems are relatively micro-scale and not sized for oilfield volumes
 > High TDS brine from self-cleaning process will still require disposal
Thank You!

The views expressed in this presentation are solely those of the author and do not necessarily reflect the views and opinions of either Chesapeake Energy LLC or the Ground Water Protection Council.