Development of Thermal Energy Storage Systems in Abandoned Mine Workings

F.A. Michel
Institute of Environmental Science
and Dept. of Earth Sciences,
Carleton University, Ottawa, Canada
Thermal Energy Storage in water, earth and rock
Timmins, Ontario

HEADFRAME
McIntyre Shaft # 11

- Tav. = 1.3°C
- Pav. = 558 mm
- HDD = 6200
- MV = 1×10^6 m3 per mine @ 20%
- WC = Ca-Mg-SO$_4$
Timmins and District Hospital
Energy Use

<table>
<thead>
<tr>
<th></th>
<th>TDH</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>9</td>
<td>60</td>
</tr>
<tr>
<td>Floor area (m²)</td>
<td>28,800</td>
<td>8,430</td>
</tr>
<tr>
<td>Energy Consumption Rate</td>
<td>1,430</td>
<td>668</td>
</tr>
<tr>
<td>(kWh/m²/yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Natural Gas</td>
<td>1,135</td>
<td>511</td>
</tr>
<tr>
<td>- Electricity</td>
<td>295</td>
<td>157</td>
</tr>
</tbody>
</table>
Energy Use (continued)

<table>
<thead>
<tr>
<th></th>
<th>TDH</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Energy Consumption (MWh/yr)</td>
<td>41,172</td>
<td>5,626</td>
</tr>
<tr>
<td>Total Energy Cost for 2000 ($)</td>
<td>900,000</td>
<td>190,000</td>
</tr>
<tr>
<td>($/m²/yr)</td>
<td>31.25</td>
<td>22.50</td>
</tr>
</tbody>
</table>
Energy Potential

- Need to consider
 - Air Temperature
 - Water Temperature
 - Flow rate of water

- Calculate energy potential based on the monthly average temperature differential between ambient air and water temperatures plus flow rates
Energy Potential (continued)

- For a temperature difference of 10°C and a flow rate of 10 L/S:

\[
10^\circ C \times 4200J/L \times 864,000L/d \times 0.2778\times10^{-6}kWh/J
\]

\[
= 10.1\text{MWh/d}
\]
Annual Energy Potential

<table>
<thead>
<tr>
<th>Cavern Water Flow - Litres/second</th>
<th>MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5000</td>
</tr>
<tr>
<td>30</td>
<td>10000</td>
</tr>
<tr>
<td>50</td>
<td>20000</td>
</tr>
<tr>
<td>70</td>
<td>30000</td>
</tr>
</tbody>
</table>
Springhill, Nova Scotia

- Tav. = 5.9°C
- Pav. = 1100 mm
- HDD = 4518
- CDD = 92
- MV = 5,600,000 m³ (seam #2)
- WC = Ca-HCO₃ to CaSO₄ + Fe, -ve Eh
Springhill N.S. Coal Field

Figure 3. Schematic cross-section through main slope pillar, Springhill coalfield, N.S. (Drawn in part from sections and plans of Cumberland Rail and Coal Co.)
Plan of Underground Workings
Springhill, N.S.

Figure 2: Composite plan showing extent of underground workings at Springhill for seven levels of mining operations. (From Nova Scotia Department of Natural Resources).
Geothermal wells at Springhill, N.S.

Figure No. 2: Geothermal Borehole Locations
Dr. Carson and Marion Murray Community Centre
Springhill Arena Well Water Temperatures
Major Issues

- Detailed knowledge of mine workings
 - drilling, interconnection, circulation pathways
- Well Interference
- Maintenance of water temperatures
- Water chemistry
- Subsidence and roof collapse near surface
Critical Issues

- Resource Ownership
 - designated Geothermal Resource Area (GRA)
 - public versus private

- Resource Development
 - individual or collective

- Resource Management
 - operation and maintenance, sustainability
 - conflicts
Environmental Benefits

- Substantial savings in conventional fuel and energy consumption (natural gas and electricity);
- A renewable energy resource, Reduced use of fossil fuels;
- Lower CO₂, sulfur and nitrogen Compound emissions;
Conclusions

- CTES potential from old mines is enormous with thousands of MWh/yr per mine
- Renewable energy source, sustainable, environmentally friendly
- Several major issues require further research
- Legacy from the miners
Acknowledgements

- Don Jones, N. S. Dept. of Natural Resources
- Town of Springhill, Nova Scotia
- Town of Timmins, Ontario
- Kinross Gold Corp. (Timmins)