An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States

by

Leslie Poch, Guenter Conzelmann, and Thomas Veselka
Argonne National Laboratory
Decision and Information Sciences Division
Center for Energy, Environmental, and Economic Systems Analysis (CEEEESA)

presented at the

2009 GWPC Water/Energy Sustainability Symposium
September 15, 2009
Salt Lake City, Utah
Study Background

- Work funded by National Energy Technology Laboratory (NETL)
 - Existing Plants Research Program – research component focuses on water use at power plants
 - Study evaluated availability of water at power plants under drought conditions and how that effects the electric power system in the drought region

- Drought is very pervasive in the U.S.
 - Many regions experience frequent droughts; some say western states have been in drought since 1999
 - Serious drought affected southeastern states in summer/fall 2007

- Drop in water levels due to drought can be double-edged sword for power sector
 - Water-cooled plants shutdown or curtail power output if water level drops below water intake structures
 - Low river flows and reservoir levels can reduce power from hydroelectric plants
Overall Study Methodology

- Simulate operation of a regional power system under non-drought conditions (base case)
- Simulate operation of a regional power system under drought conditions
- Compare results of both simulations from an operational, cost, and environmental perspective
- Draw conclusions that may be applicable to all U.S. electric power systems
Scope of Power System Simulation Analysis

- Western U.S. – Western Electricity Coordinating Council (WECC)
 - Argonne developed verified unit inventory in previous studies
 - Experiences frequent droughts
 - Region has substantial hydropower resources (28% of capacity in average year; up to 40% in wet year)
- Data obtained from public sources – unit characteristics & system loads from DOE/EIA, Federal Energy Regulatory Commission, and WECC publications
- Simulate operation of wind and hydropower plants; thermal plants served remaining loads; simulate their operation with a unit level hourly probabilistic dispatch model developed by Argonne
- Verified methodology and model operation against actual 2006 WECC data
- Simulated operation in 2010, 2015, and 2020; model results included:
 - Monthly unit generation (in Megawatt hours [MWh])
 - Monthly unit production costs ($)
 - Distribution of monthly and hourly system-wide electricity prices
 - CO₂ emissions (million tons) – CO₂ from biomass was neglected; accounts for only 1% of generation in West. Emission factors obtained from Energy Information Agency by fuel type
Simulation Modeling Assumptions

- Normal and drought hydropower scenarios – lowest hydropower generation between 1980 – 2005 chosen to represent drought year
- Future system additions followed current WECC plan & EIA Annual Energy Outlook (AEO) 2008 – units added to maintain 15% reserve margin in each WECC region
- Expansion candidates included
 - 600 MW coal unit – advanced cooling system; little to no surface water use
 - 400 MW combined cycle unit – advanced cooling system on steam turbine portion
 - 230 MW gas turbine unit
 - 50 MW geothermal unit
 - 30 MW municipal solid waste unit
 - 80 MW biomass unit
 - No new nuclear units
- Accounted for existing & new wind generation – matched AEO regional totals
- Chose drought scenario based on U.S. Drought Monitor, operated by University of Nebraska Lincoln
- Units affected by drought were obtained from water intake database
System Dispatch Methodology

- Non-dispatchable Resource Module
- Argonne Peak Shaving Algorithm
- Probabilistic Dispatch

WECC Hourly Loads -> WECC Unit Inventory

Non-Dispatchable Resources

Dispatch Hydropower Resources

Dispatch Thermal Resources

Results: Generation, Emissions, Costs, Prices
Choosing a Drought Scenario

- Drought conditions chosen from U.S. Drought Monitor (1/27/09)
- Only powerplants using fresh water for cooling and located within areas with a drought intensity of moderate or worse were shutdown
- Plants within drought area were found in database developed by a companion Argonne study (Kimmell and Veil, 2009)
- Drought affected 5 plant sites in 4 states
- If affected plant was a combined cycle plant, steam turbine was shutdown; gas turbine portion could continue to operate
- Year with lowest hydro generation between 1980 and 2005 was chosen

Drought Conditions on January 27, 2009

Source: http://drought.unl.edu/dm
Impact of Drought on Generation Mix

- Hydropower dropped by 54 TWh or about 30%
- Coal generation dropped by 20.6 TWh in 2010 & 2015; by 15.6 TWh in 2020
- Fuel oil and renewables rose only slightly
- No increase in nuclear – capacity factor already at max in base scenario. In WECC, these plants do not rely on fresh surface water for cooling
- Natural gas rose by over 70 TWh in all 3 years – made up almost entire amount not generated by coal/hydro. Not fully utilized in base scenario – have lower capacity factor than coal
Impact of Drought on Generation Cost

- Production costs rose 25%, 22%, & 23% in 2010, 2015, and 2020
- Energy Not Served (ENS) rose by 3.5 times in 2010 & more than double in 2015 & 2020; Virtually all occurred in July & August, WECC’s peak load months
- Production costs and ENS decrease over time because new coal plants with cooling systems less vulnerable to drought displace natural gas plants

Cost Differences Between Base and Drought Scenarios

- Cost (billion$)
- Year

2010 2015 2020

Production Cost Difference
ENS Cost Difference
Impact of Drought on Electricity Price

- Average monthly system-wide prices shown in table.
- Price distribution between months varies greatly; much wider in August (summer peak) than January.
- 5 to 10% of time prices in August 2010 & 2015 will exceed $150/MWh; drops to 2% by 2020.

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Price of Electricity ($/MWh)</th>
<th>Price Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>61.01 54.04 51.76</td>
<td>65.97 58.32 56.79</td>
</tr>
<tr>
<td>Feb</td>
<td>60.21 53.30 50.67</td>
<td>67.21 59.40 54.29</td>
</tr>
<tr>
<td>Mar</td>
<td>55.58 49.14 46.02</td>
<td>60.84 53.38 50.69</td>
</tr>
<tr>
<td>Apr</td>
<td>54.95 48.47 43.61</td>
<td>61.08 53.45 50.27</td>
</tr>
<tr>
<td>May</td>
<td>54.69 46.88 40.57</td>
<td>62.23 53.06 48.29</td>
</tr>
<tr>
<td>Jun</td>
<td>55.35 48.71 40.04</td>
<td>61.80 54.96 47.48</td>
</tr>
<tr>
<td>Jul</td>
<td>69.14 68.07 54.17</td>
<td>91.67 89.16 67.24</td>
</tr>
<tr>
<td>Aug</td>
<td>78.48 87.87 61.75</td>
<td>105.70 109.75 71.27</td>
</tr>
<tr>
<td>Sep</td>
<td>59.97 52.85 44.95</td>
<td>64.05 56.73 50.17</td>
</tr>
<tr>
<td>Oct</td>
<td>63.20 55.75 43.04</td>
<td>65.47 57.86 47.24</td>
</tr>
<tr>
<td>Nov</td>
<td>62.97 55.36 52.13</td>
<td>65.89 58.18 56.36</td>
</tr>
<tr>
<td>Dec</td>
<td>59.44 52.70 50.89</td>
<td>66.72 58.71 55.30</td>
</tr>
</tbody>
</table>

Price distribution between months varies greatly; much wider in August (summer peak) than January.

5 to 10% of time prices in August 2010 & 2015 will exceed $150/MWh; drops to 2% by 2020.
Impact of Drought on CO\textsubscript{2} Emissions

- CO\textsubscript{2} emissions from drought scenario higher by 20 million tons each year
- Overall, increase is small; 5.4% in 2010, 4.3% in 2015, and 3.8% in 2020
- Natural gas plants replaced virtually all generation lost due to drought
- CO\textsubscript{2} emissions are less than what might be expected because natural gas:
 - Produces less CO\textsubscript{2} per BTU than coal; emission factor is 44% less than coal
 - Units are generally more efficient; use less fuel for each unit of electricity produced

<table>
<thead>
<tr>
<th>Year</th>
<th>Base Scenario (106 tons of CO\textsubscript{2})</th>
<th>Drought Scenario (106 tons of CO\textsubscript{2})</th>
<th>Difference (106 tons of CO\textsubscript{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>408.4</td>
<td>430.5</td>
<td>22.1</td>
</tr>
<tr>
<td>2015</td>
<td>480.5</td>
<td>501.3</td>
<td>20.8</td>
</tr>
<tr>
<td>2020</td>
<td>548.1</td>
<td>569.1</td>
<td>21.0</td>
</tr>
</tbody>
</table>
Conclusions from Simulation - Generation Mix

- Natural gas plants heavily utilized during drought; are in best position because they are operated at lower capacity factors than coal plants.
- Electric systems without sufficient natural gas capacity may have difficulty generating needed energy in the short term during a drought. Would need to purchase power on the open market at prices driven higher due to drought.
- Electric systems relying heavily on coal would benefit in long term by constructing new coal plants with advanced cooling technologies. Coal started coming back by 2020 in WECC example.
- Nuclear may be a wild card in drought scenario:
 - Those with cooling systems that don’t use fresh surface water would be unaffected – as in WECC example.
 - Those with fresh water cooling systems would be subject to shutdown/curtailment – their loss could severely strain electric system.
 - Nuclear plants in other U.S. power systems rely more on fresh surface water cooling than in WECC.
Conclusions (cont’d) – Electricity Prices, Water Supplies, CO₂

- Increased generation by natural gas plants during drought would likely raise natural gas prices; consumers may be hit twice – high electricity prices and high domestic gas prices. Quantification beyond scope of this study.
- Generators have been trying to diversify coolant water supplies
 - Installing groundwater wells to supplement lake water
 - Piping groundwater from a distance
 - Using wastewater from nearby facilities, such as produced water from a coal bed natural gas project (proposed for 2 Wyoming power stations)
- Groundwater may not be an option in some areas because of competing water needs, such as drinking water
- CO₂ emissions may increase only slightly due to drought
Areas for Future Study

- Transmission constraints
 - Droughts can affect specific areas without affecting others
 - Under normal conditions, transmission lines may be at limit; heavy use and high ambient air temperature (which often accompanies drought) can further reduce operating limit

- Drought effects power plant operation other than low water intake levels
 - Often accompanied by very hot conditions
 - Power plant limits on water temperature discharge – power output reductions even though water intake levels may be sufficient
 - Effect of excessive heat on air intakes; especially gas turbines
Thank you for your attention

The full report is available at:

- NETL web site
 - Kimmell and Veil 2009 study also located on this page

- Argonne National Laboratory web site
Supplemental Slides Follow
Processing Historic Hourly Loads to Obtain Future Load Profile

Control Area Loads Are Separated into Power Pools & Aggregated Hourly

Hourly FERC Form-714 Data by Control Area for 1993-2006

- NWPP (I) Hourly Loads 1993-2006
- RMPA (II) Hourly Loads 1993-2006
- AZNM (III) Hourly Loads 1993-2006
- CAL (IV) Hourly Loads 1993-2006

Load Profile Selection

Load Shaping Algorithm

Selected Profile

Monthly Load Control Totals (Peak & Total Energy)

- Selected Profile

- Monthly Peak and Total Loads by Power Pool for 2006-2020

- NWPP (I) Hourly Loads 2007-2020
- RMPA (II) Hourly Loads 2007-2020
- AZNM (III) Hourly Loads 2007-2020
- CAL (IV) Hourly Loads 2007-2020

WECC Hourly Loads 2007-2020

NERC ES&D Data Files
WECC Coordinated Power Supply Programs
EIA Annual Energy Outlook
Creating a Thermal Unit Inventory

- Fuel Prices
 EIA-423

- Thermal Unit
 Inventory
 EIA-860

- Outages
 Rates
 GADS

- Heat Rates
 EIA-906

- Water Use
 Heat Rates &
 FGD EIA 767

- Variable O&M
 EIA AEO
Model was Calibrated to WECC 2006 Data

<table>
<thead>
<tr>
<th>Technology</th>
<th>Model Generation Mix (%)</th>
<th>Actual Generation Mix (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>31.5</td>
<td>31.2</td>
</tr>
<tr>
<td>Gas</td>
<td>26.2</td>
<td>25.6</td>
</tr>
<tr>
<td>Nuclear</td>
<td>10.4</td>
<td>9.4</td>
</tr>
<tr>
<td>Hydro</td>
<td>28.1</td>
<td>28.8</td>
</tr>
<tr>
<td>Wind</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Others</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Actual generation mix is calculated based on AEO 2008.

2006 Model Calibration for Generation Mix

Model Calibration – Price Probability Distributions for April through June 2006