What it All Means: CO$_2$-EOR Greenhouse Gas Life-Cycle Analysis of 22 Years of Class II UIC Field Operations and Monitoring

Joel Sminchak, Sanjay Mawalkar, Neeraj Gupta
Battelle, Columbus, Ohio, USA

Ground Water Protection Council Underground Injection Control Conference
February 16-19, 2020, San Antonio, Texas
Disclaimer

• This work was completed for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

• Battelle does not engage in research for advertising, sales promotion, or endorsement of our clients’ interests including raising investment capital or recommending investments decisions, or other publicity purposes, or for any use in litigation. Battelle endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work Battelle, its employees, officers, or Trustees have no legal liability for the accuracy, adequacy, or efficacy thereof.
Outline

1. Background
2. Objectives
3. MRCSP Project
4. Integration with UIC
5. Greenhouse Gas Emissions Life Cycle Analysis
6. Results/Conclusions
Acknowledgements

• This project was part of the Midwest Regional Carbon Sequestration Partnership supported by U.S. Department of Energy National Energy Technology Laboratory Contract DE FC26 05NT42589 Andrea McNemar (PM).

• Battelle’s MRCSP Contributors – Mark Kelley, Srikanta Mishra, Matt Place, Lydia Cumming, Priya Ravi Ganesh, Autumn Haagsma, Samin Raziperchikolaee, Amber Conner, Glen Larsen, Joel Main, Jacob Markiewicz, Ashwin Pasumarti, Manoj Kumar Valluri, Andrew Burchwell, Jackie Gerst, and numerous others.

• Core Energy (Bob Mannes, Kathy Dungey, Rick Pardini).

• USEPA Region 5 UIC Program.

• Michigan EGLE.

• PCOR/EERC (Nick Azzolina).

• DOE-NETL LCA program.
1. Background

- Life cycle analysis for greenhouse gas emissions accounts for all emissions generated for a process.
- Emissions expressed as CO$_2$ equivalent (kg CO$_2$e).
- Combustion of fuel products from 1 barrel (42 gallon) of oil has ~430 kg CO$_2$e/bbl emission factor.
- LCA helps understand the net benefit of carbon capture and storage projects.

6,511 Million Metric tons of CO$_2$ Equivalent
2. Carbon Storage LCA Objectives

- How much greenhouse gas emissions were emitted through Carbon Capture Utilization and Storage operations?
 - capture, compression, pipeline transport, drilling, injection fugitive emissions, embodied emissions, etc.
- How CO$_2$ much was left in the ground?
- What is the net carbon balance?

Example: CO$_2$ EOR GHG Emissions

<table>
<thead>
<tr>
<th>Conventional oil production</th>
<th>Enhanced Oil Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>emits 0.51 tons of CO$_2$ per barrel</td>
<td>emits 0.54 tons per barrel. But, it also stores 0.30 metric tons of CO$_2$ underground. Thus, net emissions are 0.24 tons per barrel.</td>
</tr>
</tbody>
</table>

0.51 tons CO$_2$ - 0.30 = net 0.24 tons CO$_2$

2. MRCSP Carbon Storage LCA Objectives

- Bottom-up analysis to determine the net greenhouse gas emission footprint of CO₂ EOR for this specific operation.
- Base on site specific data on CO₂ metering, fuel, electricity, construction/wells, fugitive emissions.
3. Midwest Regional Carbon Sequestration Partnership Phase III Demonstration

Primary goal: To execute a large-scale CO$_2$ injection test to evaluate best practices and technologies required to implement carbon sequestration.
3. MRCSP Phase III Large Scale CCUS Demonstration

- **Location:** Otsego County, Michigan
- **Source of CO$_2$:** Local Natural Gas Processing Plant (Antrim Shale Gas ~15% CO$_2$ content)
- **Reservoir Type:** Closely-spaced, highly compartmentalized oil & gas fields located in the Northern Michigan’s Niagaran Reef Trend
- **Injection Goal:** 1,000,000 metric tons (U.S. emissions per person = 15-20 metric tons per year)
3. The MRCSP site included 10 reefs in different stages of the oil production life cycle.

Natural gas processing is the source of the CO₂.
4. Integration with UIC

- CO₂ injection wells were permitted through USEPA Class II regulations Region 5/Michigan EGLE (more than 10 Class II wells over 22 years).
- EPA Monitoring Reporting & Verification plan prepared for CO₂ accounting and metering for 45Q credits (monitoring, leakage, mass balance calculations).
5. LCA: Establishing Boundary Conditions

- CO\textsubscript{2} EOR is part of a bigger hydrocarbon life cycle, including upstream, gate to gate, and downstream components (i.e. “Cradle to Grave.”)
- This analysis focused on Gate to Gate portion of LCA.

![Diagram of CO\textsubscript{2} EOR life cycle stages]

- **Upstream**
 - Natural Gas Production
 - CO\textsubscript{2} Separation

- **Gate to Gate**
 - CO\textsubscript{2} Compression and Pipeline Transport
 - CO\textsubscript{2} EOR

- **Downstream**
 - Pipeline Crude Transport
 - Petroleum Refining
 - Gasoline Product Transp.
 - Gasoline Combustion
5. LCA: Establishing Boundary Conditions

UPSTREAM
- Antrim Gas Wells
- Chester 10 Gas Processing CO₂ Capture
- White Frost CO₂ Pipeline
- Chester 10 CO₂ Compression

GATE to GATE
- Dover 36 Hydrocarbon Processing Facility
- Oil/CO₂ separation, Dehydration, Compression
- Oil/CO₂ + Oil
- Produced Water
- Oil

DOWNSTREAM
- Transport Refining POS Transport Combustion
- Oil

Niagaran Reefs
- Injection-Production
5. Life Cycle Assessment of CO$_2$-EOR

- Niagaran Reefs CO$_2$ EOR operations in place since 1996.
- CO$_2$ EOR expanded to 10 reefs over ~22 years.
- 2.2 million metric tons net CO$_2$ in reefs thru 2018.
- 2.3 million barrels oil produced (294,326 metric tons).
5. LCA: Gate-to-Gate Operations Data

- Detailed Gate-to-Gate data from MRCSP, Core Energy
 - CO₂ injected, CO₂ recycle, new CO₂, oil produced, brine produced
- Emission Sources
 - Compression natural gas use (MCF), facility electricity use (kWhr), fugitive emissions (CO₂ & methane), venting/flaring, facility construction, new wells, produced water/brine injection, land use.
5. LCA: Gate-to-Gate Operations Key Input

- Example- snapshot of 2017 key input.

2017 CO₂ Inventory

- **Total CO₂ Injected**: 615,184 metric tons
- **New CO₂ Injected**: 310,549 metric tons
- **CO₂ Recycle**: 317,174 metric tons
- **Oil Produced**: 194,861 bbl (25,040)

2017 Operations

- **Facility Electricity (KWH)**: 1,712,958
- **Compression Natural Gas (MCF)**: 550,734
- **Fugitive Emissions**:
 - CH₄: 530
 - CO₂: 12,539

Metrics:

- **Metric Tons CO₂e**
- **Metric Tons CO₂**
- **Metric Tons CH₄**

Key Input:

- LCA: Gate-to-Gate Operations
- Example: Snapshot of 2017 key input.
5. LCA: Gate-to-Gate Operations Data

- Operations trends reflect CO$_2$-EOR cycles and additional reefs.
5. CO$_2$ EOR LCA Model

- Modified version of Azzolina/EERC (2016) CO$_2$ EOR LCA model framework used to calculate GHG emissions factors
- Direct measurements entered from CO$_2$ EOR system monitoring, operations, and new reef developments.

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>SUB-SEGMENT</th>
<th>PARAMETER DESCRIPTION</th>
<th>UNITS</th>
<th>LOW VALUE</th>
<th>EXPECTED</th>
<th>HIGH VALUE</th>
<th>SOURCE</th>
<th>NOTES</th>
<th>BASE CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-to-Gate</td>
<td>all Operations – Artificial</td>
<td>Crude artificial lift pump electricity rate</td>
<td>kWh / kg crude</td>
<td>1.00E-03</td>
<td></td>
<td></td>
<td>System Data</td>
<td></td>
<td>1.00E-03</td>
</tr>
<tr>
<td>Gate-to-Gate</td>
<td>all Operations – Artificial</td>
<td>Crude artificial lift pump electricity</td>
<td>kWh</td>
<td></td>
<td></td>
<td></td>
<td>Derived</td>
<td></td>
<td>25.040</td>
</tr>
<tr>
<td>Gate-to-Gate</td>
<td>all Operations – Artificial</td>
<td>Crude artificial lift pump electricity</td>
<td>MWh</td>
<td></td>
<td></td>
<td></td>
<td>Derived</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Gate-to-Gate</td>
<td>all Operations – Artificial</td>
<td>CO$_2$ emissions</td>
<td>kg CO$_2$</td>
<td></td>
<td></td>
<td></td>
<td>Derived</td>
<td></td>
<td>18.526</td>
</tr>
<tr>
<td>Gate-to-Gate</td>
<td>all Operations – Artificial</td>
<td>CO$_2$ emissions factor</td>
<td>kg CO$_2$ / bbl</td>
<td></td>
<td></td>
<td></td>
<td>Derived</td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

GATE-TO-GATE: WELL OPERATIONS – CO$_2$ COMPRESSION AND INJECTION ELECTRICITY

Gate-to-Gate	CO$_2$ Compression and Injection	Compressor power factor	MW /[tonne recycled CO$_2$/day]	2.70E-03				NA, Cooney et al. (2015)	2.70E-03
Gate-to-Gate	CO$_2$ Compression and Injection	Compressor power	MW				Derived		2.35E+00
Gate-to-Gate	CO$_2$ Compression and Injection	Compressor energy	MWh				Derived		29.533
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ emissions	kg CO$_2$	29136000	29136000	29136000	System Data	Combustion data from Core 35	29.136,000
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ emissions factor	kg CO$_2$ / bbl	349.5			Derived		349.5
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ pump power factor	MW /[tonne injected CO$_2$/day]	0.00E+00	0.00E+00	0.00E+00	System Data	See Line 115	0.00E+00
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ pump power	MW				Derived from the pump power		0.000
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ pump energy	MWh				Derived from the pump power		0.000
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ emissions	kg CO$_2$	6591500	6591500	6591500	System Data	Gas Processing data from Core 35	6,591,500
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ emissions factor	kg CO$_2$ / bbl	33.8			Derived		33.8
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ emissions (total)	kg CO$_2$				Derived from the sum of combustible gases and fugitive emissions		35,727,500
Gate-to-Gate	CO$_2$ Compression and Injection	CO$_2$ emissions (total)	kg CO$_2$ / bbl				Derived from the CO$_2$ emissions factor		383.3

GATE-TO-GATE: WELL OPERATIONS – CO$_2$ COMPRESSOR FUGITIVE EMISSIONS

| Gate-to-Gate | CO$_2$ Compressor | Compressor CO$_2$ emissions rate (direct to atmosphere) | kg CO$_2$ / MW-day | 63.6 | | | | NA, Cooney et al. (2015) | 63.6 |
| Gate-to-Gate | CO$_2$ Compressor | Compressor CO$_2$ emissions rate (direct to atmosphere) | kg CO$_2$ / bbl | 549 | 549 | 549 | System Data | Subpart C Core forms | 549 |

5. CO₂ EOR LCA Model Results

- Highest emission factors from compression & downstream.

<table>
<thead>
<tr>
<th>Category</th>
<th>2017 Emission Factor kgCO₂e/bbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate to Gate</td>
<td>198 kgCO₂e/bbl oil</td>
</tr>
<tr>
<td>Downstream</td>
<td>470 kgCO₂e/bbl oil</td>
</tr>
<tr>
<td>Total</td>
<td>668 kgCO₂e/bbl oil</td>
</tr>
<tr>
<td>CO₂ Storage</td>
<td>-1529 kgCO₂e/bbl oil</td>
</tr>
<tr>
<td>Net</td>
<td>-862 kgCO₂e/bbl oil</td>
</tr>
</tbody>
</table>

Graph:
- Gate to Gate: 198 kgCO₂e/bbl oil
- Downstream: 470 kgCO₂e/bbl oil
- Total: 668 kgCO₂e/bbl oil
- CO₂ Storage: -1529 kgCO₂e/bbl oil
- Net: -862 kgCO₂e/bbl oil

- EOR Processing Electricity: 5.8 kgCO₂e/bbl oil
- Venting & Flaring: 7.4 kgCO₂e/bbl oil
- Crude oil transport: 4 kgCO₂e/bbl oil
- Crude oil refining: 46 kgCO₂e/bbl oil
- Fuel transport: 5 kgCO₂e/bbl oil
- Fuel combustion: 415 kgCO₂e/bbl oil
- Pipeline Transport: 0.03 kgCO₂e/bbl oil
- Compression: 183.3 kgCO₂e/bbl oil
5. LCA Model Output- “Gate to Gate”

- Large amount of variability in gate to gate EF over 20 years.

Annual Oil Production and CO\textsubscript{2} Associated Storage

- Total Oil Production (metric tons)
- Total CO\textsubscript{2} Storage (metric tons)
5. LCA Model Output—“Gate to Gate”

- “Gate to Gate” EOR EF = 163 kgCO2e/bbl GHG life cycle emissions factor (371,576,000 kg CO₂ / 2,290,473 BBL).

![Graph showing Gate-to-Gate Greenhouse Gas Emissions Factor (kg CO2e/bbl oil)]

PCOR EOR Model Low*

Niagaran Reef EOR

Natural Dome EOR-Adv

Canadian Oil Sands

Natural Dome EOR-Conv

PCOR EOR Model High*

After Marrriot (2013)

* Azzolina et al., (2017)
5. LCA Model Output—“Gate to Grave”

- “Gate to Grave” **net emissions** accounts for CO$_2$ stored.
- Analysis reflects ups and downs of operations.

![Graph showing net emissions from 1994 to 2018. The graph displays fluctuations in CO$_2$ emissions over the years.]
5. LCA Model Output- “Cradle to Grave”

“Cradle to Grave” results suggest there is a net negative CO₂ emissions of -159,860 metric tons.

<table>
<thead>
<tr>
<th>Year</th>
<th>Upstream Capture Emissions* (metric tonnes)</th>
<th>Gate to Gate total Emissions (metric tons)</th>
<th>Downstream Total Emissions (Metric tons)</th>
<th>Total CO2 Associated Storage (metric tonnes)</th>
<th>Net CO2e Emissions (metric tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>22,872</td>
<td>7,166</td>
<td>47</td>
<td>139,037</td>
<td>-108,952</td>
</tr>
<tr>
<td>1997</td>
<td>14,142</td>
<td>10,511</td>
<td>60,767</td>
<td>97,026</td>
<td>-11,606</td>
</tr>
<tr>
<td>1998</td>
<td>38,543</td>
<td>19,554</td>
<td>86,924</td>
<td>98,763</td>
<td>46,257</td>
</tr>
<tr>
<td>1999</td>
<td>1,289</td>
<td>12,025</td>
<td>48,312</td>
<td>5,941</td>
<td>55,684</td>
</tr>
<tr>
<td>2000</td>
<td>2,061</td>
<td>9,786</td>
<td>30,084</td>
<td>15,259</td>
<td>26,673</td>
</tr>
<tr>
<td>2001</td>
<td>-</td>
<td>8,759</td>
<td>31,757</td>
<td>-12</td>
<td>40,529</td>
</tr>
<tr>
<td>2002</td>
<td>72</td>
<td>8,237</td>
<td>24,005</td>
<td>665</td>
<td>31,649</td>
</tr>
<tr>
<td>2003</td>
<td>1,174</td>
<td>9,397</td>
<td>22,580</td>
<td>11,585</td>
<td>21,566</td>
</tr>
<tr>
<td>2004</td>
<td>528</td>
<td>9,521</td>
<td>24,859</td>
<td>4,728</td>
<td>30,180</td>
</tr>
<tr>
<td>2005</td>
<td>175</td>
<td>4,697</td>
<td>26,011</td>
<td>1,500</td>
<td>29,383</td>
</tr>
<tr>
<td>2006</td>
<td>19,916</td>
<td>13,308</td>
<td>27,620</td>
<td>87,763</td>
<td>-26,918</td>
</tr>
<tr>
<td>2007</td>
<td>5,574</td>
<td>10,042</td>
<td>47,732</td>
<td>14,079</td>
<td>49,269</td>
</tr>
<tr>
<td>2008</td>
<td>30,986</td>
<td>18,472</td>
<td>59,543</td>
<td>120,595</td>
<td>-11,594</td>
</tr>
<tr>
<td>2009</td>
<td>23,417</td>
<td>17,449</td>
<td>54,040</td>
<td>56,505</td>
<td>38,402</td>
</tr>
<tr>
<td>2010</td>
<td>32,682</td>
<td>18,740</td>
<td>47,226</td>
<td>154,237</td>
<td>-55,589</td>
</tr>
<tr>
<td>2011</td>
<td>36,195</td>
<td>24,530</td>
<td>57,638</td>
<td>166,463</td>
<td>-48,100</td>
</tr>
<tr>
<td>2012</td>
<td>35,879</td>
<td>26,342</td>
<td>59,147</td>
<td>159,857</td>
<td>-38,489</td>
</tr>
<tr>
<td>2013</td>
<td>40,759</td>
<td>26,118</td>
<td>59,495</td>
<td>182,417</td>
<td>-56,045</td>
</tr>
<tr>
<td>2014</td>
<td>32,740</td>
<td>26,908</td>
<td>66,357</td>
<td>144,313</td>
<td>-18,309</td>
</tr>
<tr>
<td>2015</td>
<td>34,280</td>
<td>27,971</td>
<td>91,614</td>
<td>148,202</td>
<td>5,664</td>
</tr>
<tr>
<td>2016</td>
<td>40,759</td>
<td>26,118</td>
<td>59,495</td>
<td>182,417</td>
<td>-56,045</td>
</tr>
<tr>
<td>2017</td>
<td>64,433</td>
<td>38,495</td>
<td>91,614</td>
<td>298,010</td>
<td>-103,468</td>
</tr>
<tr>
<td>Total</td>
<td>478,476</td>
<td>374,147</td>
<td>1,076,867</td>
<td>2,089,350</td>
<td>-159,860</td>
</tr>
</tbody>
</table>
6. Results - Total LCA results 1996-2017

Upstream
CO₂ Capture Plant Operations
478,476 tonnes
CO₂e Generated

Gate to Gate
(compression, EOR, & gas processing)
374,147 tonnes
CO₂e Generated

Downstream
1,076,867 tonnes CO₂e Generated

Associated CO₂ Storage
-2,089,350 tonnes

Net
-159,860 tonnes
6. Conclusions

- Greenhouse gas emissions life cycle analysis helps us understand the benefits of carbon capture and storage.

- The greenhouse gas life cycle analysis highlights the value of integrating Class II UIC operations and site-specific data over a long period of CO$_2$-EOR operations.

- The system benefited from a ready source of CO$_2$, short pipeline system, natural gas fueled compression, highly contained reservoir, and basic oil processing system.

- Analysis of 22 years of CO$_2$-EOR operations and monitoring shows it is possible to have negative net emissions if you store a large amount of CO$_2$ in association with EOR operations.

(Marriott/DOE-NETL, 2013)
Thanks!

Questions?