Treatment Options for Recycling Produced Water

D. Steven Tipton, P.E.
July 9, 2013
Unconventional Oil & Gas Water Management Forum
Grapevine, TX
Considerations

- Drilling and Completion Program
 - *Exploratory*
 - *Development*

- Infrastructure
 - Frac pits *(Fresh Water)*
 - Recycle pits *(Produced Water)*
 - Storage for processed water
 - Transfer lines

- Storage capacity
 - Untreated
 - Processed

- Frac Fluid Chemistry
 - Slick water
 - Fresh linear or cross linked gel
 - High salt tolerant gel
Recycling Challenges

- Fresh water
 - Few problems with frac fluid chemistry

- Produced or Saline water
 - Must be cost neutral with fresh water
 - Minerals can interfere with frac gel
 - Water quality varies widely
 - May cause scale or bacteria growth

- Study needed determine water quality targets
 - Results specific to a basin or formation
 - Results will point to type of water treatment needed

- Regulations
 - Recycle or produced water pits often have to be permitted
 - OK and TX require design, certification, and construction supervision by a professional engineer
Concerns with Produced Water Reuse

Formation Damage
- Potential for solids to compromise fracture geometry
 - Improper fracture propagation
 - Potential for reduction in production
- Suspended colloids not removed by simple filtration

Scaling
- Increased potential with higher hardness
- Theoretical calculations and experiments required

Fluid Formulation
- Varied water quality
- Polymer hydration issues in high salinity water
 - Greater issue with polymer crosslinking
 - Premature crosslinking due to boron

Source: Halliburton
What Are Your Choices for Water Treatment?

- Evaluated more than 40 companies
- More getting into our business every day
- A large number of technology choices and many variants of those technologies
- Overview of some of the available technologies
- Discuss some specific examples
Treatment Options

There are a number of treatment options available to producers, with options including dilution, settling, chemical treatment, filtration, clarification, electro-coagulation, and distillation.

- **Dilution**
 - ~$1.50 - $2.00/bbl
 - Involves blending flowback or produced water with freshwater during fracturing.
 - Not free - has a handling cost for frac tanks, containment, water transfer, etc.

- **Settling**
 - ~$2.00 - $2.50/bbl
 - Must allow enough residence time in flow back pits or frac tanks for solids to settle.
 - Risks associated with storing raw water on location for long periods of time.

- **Filtration**
 - ~$2.00 - $3.00/bbl
 - Bag filters, disk filters, or sand filters can be used. Other types available.
 - Issues can arise from expended filter sock disposal and bacteria introduction.
 - Water sources for back flushing system can be logistically difficult.

- **Chemical Precipitation**
 - ~$2.50 - $4.00/bbl
 - Involves pH adjustment and the addition of polymers or other floculants.
 - Issues can arise from excess sludge formation and sludge disposal.
 - Chemical drum or tote management can be logistically difficult on location.

- **Clarification**
 - ~$3.50 - $4.50/bbl
 - Involves the use of equipment including DAFs or clarifiers.
 - Typically involves chemical precipitation in conjunction with clarification equipment.
 - Advantages include few moving parts and less downtime.

- **Electro-Coagulation**
 - ~$4.50 - $5.50/bbl
 - Sacrificial plates create a hydrolyzed metal sweet floculant that significantly lowers total suspended solids (TSS), greases and oil, and in some cases metals count.
 - High operating costs relative to other TSS treatment systems.

- **Distillation**
 - ~$5.50 - $8.00/bbl
 - Highest effluent water quality.
 - Effluent can potentially be placed in freshwater impoundments with approved NPDES permits.
 - Highest operating costs due to energy requirements.
Technology TDS Ranges

- **High**
 - Crystallizers
 - Brine Concentrators
 - Brackish RO
 - IX
 - RO

- **Med**
 - Chemical Precipitation

- **Low**
 - Electrocoagulation
 - Filtration/Hydro cyclones

Source: Halliburton
Water Treatment Comparison

- **EC**
- **Distillation**
- **Evaporation**
- **Ozone**
- **Ultrafiltration**
- **RO**
- **Chemical Precipitation**
- **Filtration Hydro cyclone**

Water Value Added
- High
- Med
- Low

Treatment Cost $/ BBL
- 0
- 2
- 4
- 6
- 8

- TDS removal NOT necessary for most water reuse
- Small percentage removal of TSS/HC passing on residuals

Source: Halliburton
Centralized Facility

- Fresh water supply
- Fresh water storage
- Water treating equipment
- Influent/ Effluent storage
- Class II UWD well
Water Treatment and Reuse
Dilution and Settling

- Need large lined permitted pits
- Simple removal of TSS
- 100% water recovered for reuse
- Can use with all produced waters
- Low energy consumption
- For settling need sufficient residence time
- Blend fresh water with produced water
- Not free
Filtration

- Simple removal of TSS, using filter cartridges/socks/media
- 99.9% water recovered for reuse
- Inexpensive with all waters
- Low energy consumption
- Have filtered at 100 bbls per minute
- Highly mobile
- Must properly dispose of filters or filter media
- Need fresh water for back flushing
Chemical Precipitation/Clarification

- Chemical removal of TSS and organics
- Adjust chemical protocol to meet required water specifications
- Sludge can be dewatered and disposed of in landfills

Typical DAF System

Fig. 1. Schematic of dissolved air flotation
Induced Gas Flotation Separator (Clarification)

Single Cell IGF - Water Clarification: Level I Treatment

- Technology refined over decades
- Low and Efficient residence time
- Minimal Maintenance and Operator required – Few Moving Parts
- TSS and floatable hydrocarbon output < 10 ppm
- Easily Scalable from 2,500 bpd and up – Small Footprint
- Recycles low TDS water for beneficial reuse as a Stand Alone Unit
Electro Coagulation

- Removes suspended solids and heavy metals
- Treats water with TDS ranging from 100 – 300,000 mg/L
- Coagulates particles < 1 micron
- Reduces turbidity to < 10 NTU
- Breaks emulsions
- Fully automated
- Scalable
- Self-cleaning
Mobile Distillation

- Removes suspended solids and heavy metals
- Treats water with TDS ranging from 100 – 300,000 mg/L
- Coagulates particles < 1 micron
- Reduces turbidity to < 10 NTU
- Non-polymer based water treatment contributes up to 75% reduction in sludge generation
- Breaks emulsions
- Fully automated
- Scalable
- Self-cleaning
Mobile Distillation (Vapor Recompression)

- **Rapid deployment**: Smaller footprint, no massive setup
- **Self-contained**: Ready to go, connect and play
- **On-board power** or adaptable to any on-site power source
- **Robust**: Instantly configures to dynamic feed water conditions

- **Low Energy**: 3 phase 480 V - 300 kW power source (AVARA 1000)
- **Wireless uplinked**: remote oversight and control
- **Durable**, Resilient, Reliable – Oil & Gas Field Tough
Distillation

- Highest effluent water quality
- Large capacity operations
- Highest energy requirement
- Highest operating cost
- Can discharge water back into the environment with proper permits
- Energy costs can be mitigated by using waste heat
Water Quality Limits for Fracturing Fluids

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>$< 10^5$/ml</td>
</tr>
<tr>
<td>pH</td>
<td>6 to 8</td>
</tr>
<tr>
<td>Temperature</td>
<td>40° to 100° F</td>
</tr>
<tr>
<td>Bicarbonateates</td>
<td>< 300 ppm</td>
</tr>
<tr>
<td>Calcium and Magnesium</td>
<td>$< 2,000$ ppm</td>
</tr>
<tr>
<td>Iron</td>
<td>< 10 ppm</td>
</tr>
<tr>
<td>Phosphates</td>
<td>< 5 ppm</td>
</tr>
<tr>
<td>Reducing Agents</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Sulfates</td>
<td>< 500 ppm</td>
</tr>
<tr>
<td>Boron</td>
<td>< 10 ppm</td>
</tr>
</tbody>
</table>
Ecosphere

- Combination of several processes
 - **Phase 1**
 - Filtration
 - Oxidation using ozone injection and ultrasonic cavitation
 - Coagulate suspended solids
 - UV light for purification
 - Carbon Filtration
 - **Result Clean Brine Water**
 - **Phase 2**
 - One micron Filtration
 - RO to treat water from less than 45,000 ppm TDS to 50 ppm TDS
 - **Result Fresh Water and Concentrated Salt Water**
Rockwater

• Combination of several processes
 • *Phase 1*
 • Filtration
 • Oxidation using Neohydro electro-oxidation equipment
 • Coagulate suspended solids
 • Clarify water
 • *Result Clean Brine Water with 130 ppm Boron*
Express Energy/Omni Water Solutions

• Combination of several processes
 • **Phase 1 (Express)**
 • Gravity separation
 • Chemical injection
 • Coagulate suspended solids
 • Clarify water
 • **Result Clean Brine Water**
 • **Phase 2 (Omni)**
 • Oxidation using Ozone
 • Multiple filtration stages
 • RO to remove Boron
 • **Result Clean Brine with less than 5 ppm Boron**
Why Newfield Recycles Water

- Saving Fresh Water – 10 million barrels per year
- Saving Money – $50 million per year
- Limited supply of fresh water due to drought
- Reduce the need to dispose of produced water
- Potential to reduce transportation costs
- Environmentally responsible
- Improved social license
Goals for Cana Woodford

Minimize Fresh Water Use

Recycle Produced Water For Less Than $2.00

Replace Fresh Water with Saline Water
Questions!!??!!