
Quanlin Zhou, Jens Birkholzer
Earth Sciences Division
Lawrence Berkeley National Laboratory, Berkeley, CA

Hannes Leetaru, Edward Mehnert
Illinois State Geological Survey, Champaign, IL
Midwest Geological Sequestration Consortium (MGSC)

Yu-Feng Lin
Illinois State Water Survey, Champaign, IL
1.1. Scale and Magnitude of GCS

World Oil Production in 2006: \(4.3 \times 10^9 \text{ m}^3\) (73.54 million barrel/day)

World CO\(_2\) Emissions in 2006: \(36.5 \times 10^9 \text{ m}^3\) (29.2 billion metric ton CO\(_2\)/year)

US Oil Consumption in 2006: \(1.2 \times 10^9 \text{ m}^3\) (7.55 billion barrels/year)

US CO\(_2\) Emissions in 2006: \(7.4 \times 10^9 \text{ m}^3\) (5.9 billion metric ton CO\(_2\)/year)

US Class II Brine Injection: \(2.8 \times 10^9 \text{ m}^3\) (2 billion gallons/day in 144,000 wells)

US Groundwater Extraction in 2000: \(117.0 \times 10^9 \text{ m}^3\) (84.5 billion gallons/day)

The Scale and Magnitude of GCS is unprecedented
1.2. DOE Regional Partnerships

Site Characterization (2003-2005)

Validation Phase (2006-2009)

Demonstration Phase (2008-2017)

Full-Scale Deployment (?-?)

with the goal to effectively mitigate climate change

Illinois Basin
1.3. Motivation and Objectives

(Birkholzer et al., IJGGC, 2009)

Mt Simon Storage Capacity: 27-109 Gt CO₂
Large Stationary CO₂ Emissions: ~300 Mt/Year
Average Updip Slope: 8 m/km
Table of Contents

❖ Site Characterization
 ➢ Groundwater Resources Development
 ➢ Natural Gas Storage

❖ Basin Hydrogeology
 ➢ Basin Geology
 ➢ Hydrogeologic Properties
 ➢ Pre-Injection Conditions

❖ Model Development
 ➢ Multi-Site CO₂ Storage Scenario (Hypothetical)
 ➢ Three-Dimensional Basin-Scale Model

❖ Simulation Results
 ➢ Plume-Scale Processes: CO₂ Trapping Mechanisms
 ➢ Basin-Scale Processes: Pressure Buildup + Brine Migration
 ➢ Environmental Impact on Groundwater Resources

❖ Summary and Conclusions
2. Site Characterization

Site Characterization

- Oil and Gas Exploration and Production
 - Deep geo-boreholes for oil exploration
 - One order of magnitude in production rate/volume less than GCS
- Deep Waste Injection
 - 33 wells at 18 sites in the Illinois Basin, 18 of which are into Mt Simon
 - Injection rate of 1.2 million m³ in Illinois in 1984
- Natural Gas Storage (Analog)
- Groundwater Resources Development (Analog)
- Ongoing Geologic Carbon Sequestration

Objectives

- To determine basin hydrogeology
- To have analogs for multiscale GCS processes
- To understand potential discharge/leakage pathways
- To know the scale of the problems
2.1 Basin Stratigraphy

Top
- Maquoketa
- Eau Claire
- Ironton
- Coal

Middle
- St. Peter
- Ordovician

Bottom
- Petroleum Production
- Mt. Simon
- Precambrian Granite
2.2. Natural Gas Storage

<table>
<thead>
<tr>
<th>2006</th>
<th>USA</th>
<th>Illinois + Indiana</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Aquifer Storage Fields</td>
<td>44</td>
<td>30</td>
</tr>
<tr>
<td>Storage Capacity (10^9 m³, Standard T&P)</td>
<td>38.4</td>
<td>27.3</td>
</tr>
<tr>
<td>Storage Capacity (10^9 m³, T=24°C, P=105 bar)</td>
<td>0.29</td>
<td>0.21</td>
</tr>
</tbody>
</table>
2.2. Natural Gas Storage (Cont.)

Manlove Natural Gas Storage Field

Herscher Natural Gas Storage Field

Secondary Seals

(Figures from Morse & Leetaru, MGSC, 2003)
2.3. Groundwater Development

(a) CO$_2$ Storage Rate vs. Pumping Rate

(Mandle and Kontis, 1992, Northern Midwest RASA)
3. Hydrogeology of the Illinois Basin

- **Basin Geology (Deep Formations)**
 - Mount Simon Sandstone → Storage Formation (4 Units and 24 Layers)
 - Eau Claire Formation → Caprock
 - Pre-Cambrian Granite → Baserock

- **Formation Properties (Porosity and Permeability)**
 - Vertical Variability at 0.15 m scale from deep wells
 - Spatial Variability Characterization

- **Pre-Injection Temperature/Salinity Conditions**
3.1. 3D GeoModel: Three Formations

(a) Mt Simon Thickness (m): 60 Boreholes

(b) Eau Claire Thickness (m): 98 Boreholes

Elevation (m)

Pre-Cambrian Granite

Mt Simon Sandstone

Overlying Formations

Site 10
Site 9
Site 8

Northing (km)

Easting (km)
3.1. 3D GeoModel: Four Mt Simon Units

Weaber-Horn #1 Well, with unit correlation with Hinton #7 Well in the Manlove Gas Storage Field
4. Basin-Scale Model Development

- A Hypothetical Storage Scenario for Full-Scale GCS Deployment
- 3D Mesh Generation
- Boundary and Initial Conditions
- TOUGH2/ECO2N (Pruess, 2005) Runs
 - Two-phase CO\(_2\)-brine flow at the plume scale
 - Single-phase brine flow at the basin scale
4.1. Hypothetical Storage Infrastructure and Scenario

- **Hypothetical Storage Infrastructure (Most Suitable, Core Injection Area):**
 - Sufficient Depth (1100 – 2500 m)
 - Sufficient Thickness (300 – 700 m for MS, and >90 m for Caprock)
 - No Known Large Faults
 - >32 km Away from Gas Storage Fields in Operation
 - 250 × 170 km = 24,000 km² in size

- **Hypothetical Storage Scenario (Full-Scale Deployment):**
 - 20 Injection Sites with Spacing: 27 km in Easting + 30 km in Northing
 - Injection Rate: 5 Mt CO₂/year per site over 50 years
 - 1/3 Large Stationary CO₂ Emissions

Top Mt Simon Elevation (m) Contour
4.2. 3D Mesh Generation

2D Mesh: 20,408 Columns, ~60 Model Layers (Maximum Δz=10 m)
3D Mesh: 1,254,000 Gridblocks, 3,725,000 Connections
5. Simulation Results

- CO₂ Plume Evolution and Secondary Seal Effects
- Pressure Buildup Propagation and Interference
- Basin-Scale Pressure Buildup and Brine Migration
- Environmental Impact on Groundwater Resources
5.1. CO₂ Plume Evolution (1)

- A typical gravity-override CO₂ sub-plume developed in the injection unit of high-K and high-porosity
- A pyramid-shaped sub-plume developed in the upper and middle units
- Preferential lateral flow occurring in high-K layers, with CO₂ accumulation
- A good correlation between CO₂ saturation and layer permeability and entry capillary pressure
The CO$_2$ plume never reaches the top of Mt Simon, because of the assumed stratified system and secondary seal effects.

After 150-year redistribution, most of the injected CO$_2$ is trapped as residual saturation (0.2~0.25). A small fraction CO$_2$ migrates in high-K layers along updip slopes.
5.1. CO₂ Plume Evolution (3)
5.1. CO$_2$ Plume Evolution (4): Analog

(Figures from Morse & Leetaru, MGSC, 2003)
5.2. Pressure Buildup Interference (1)

(a) Case A: 0.5 year

(b) Case A: 5 years
5.2. Pressure Buildup Interference (2)

No Caprock Geomechanical Damage is Expected
5.3. Basin-Scale Pressure Buildup and Brine Migration (1)

![Graphs showing pressure buildup and brine migration](image)

(a) Case A: 50 years

(b) Case A: 100 years

Cut-Off=0.01 bar
5.3. Basin-Scale Pressure Buildup and Brine Migration (2)

(a) Volume of displaced brine
(b) Volume of upward-migrated brine

<table>
<thead>
<tr>
<th>Time (years) Since Injection Starts</th>
<th>Volume of Resident Brine (10^9 m3)</th>
<th>Volume of out-flowing brine</th>
<th>Volume of upward-migrated brine</th>
<th>Volume of stored brine by compressibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (years) Since Injection Starts</th>
<th>Brine Upward-Migration Rate (10^6 m3/year)</th>
<th>Total Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>200 years</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Far-Field</th>
<th>Near-Field</th>
<th>Core-Injection</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upward Migration Rate at 50 years (106 m3/y)</td>
<td>0.95</td>
<td>7.4</td>
<td>14.4</td>
</tr>
<tr>
<td>Upward Migration Rate at 200 years (106 m3/y)</td>
<td>2.1</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Volume at 50 years (x 109 m3)</td>
<td>0.017</td>
<td>0.14</td>
<td>0.33</td>
</tr>
<tr>
<td>Volume at 200 years (x 109 m3)</td>
<td>0.36</td>
<td>1.21</td>
<td>1.57</td>
</tr>
</tbody>
</table>
5.4. Environmental Impact of GCS

- GCS has no impact on freshwater in updip Mt. Simon: brine migration velocity in Mt. Simon in northern Illinois is on the order of 0.1 m/year.
- Upward brine migration is <0.008 m/year on the regional scale, although brine migration rate and volume is large.
- GCS-induced pressure buildup is less significant than pumping-induced drawdown in northern Illinois.
- If there is no significant salinity change in the worst pumping scenario in the 1980-1990s, it is believed that GCS will not impact groundwater beyond that scenario.
5. Summary and Conclusions

- An integrated model was developed to represent a *hypothetical full-scale deployment scenario of carbon sequestration* in the Illinois Basin.

- Simulated plume-scale behavior indicates favorable conditions for CO\(_2\) storage in Mt Simon:
 - High-K and high-\(\Phi\) Arkosic Unit provides *Excellent CO\(_2\) Injectivity* in lower Mt Simon,
 - Secondary seals *Significantly Retards upward CO\(_2\) migration,*
 - Thick, extensive Mt Simon provides *Large CO\(_2\) Storage Capacity,* and
 - Thick regional-scale Eau Claire seal ensures *Long-Term CO\(_2\) Containment* in the storage formation.

- Simulated basin-scale behavior indicates that
 - High hydraulic diffusivity helps reduce pressure buildup in the core injection area, thus *enhancing caprock geomechanical integrity,*
 - High regional caprock permeability allows for natural attenuation of pressure in the storage formation, thus *enhancing storage capacity of Mt Simon,*
 - Brine upward migration occurs in the core injection area, into a thick series of overlying saline aquifers and aquitards, at a maximum velocity of \(~8\) mm/year.
5. Summary and Conclusions (Cont.)

- Environmental Impact on Groundwater Resources
 - Environmental concerns of brine migration into the updip Mt Simon in northern Illinois and southern Wisconsin may not be an issue,
 - Moderate pressure buildup is obtained in northern Illinois, where upward brine migration might be a concern, if local seal imperfections exists,
 - Impact of GCS on shallow freshwater resources in northern Illinois may be less than that induced by heavy pumping from overlying freshwater aquifers.

- Further research is needed to couple a regional groundwater flow model with the integrated model for environmental impact assessment
Acknowledgment

- This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the U.S. Department of Energy. The project is jointly coordinated by NETL and the U.S. Environmental Protection Agency (USEPA).