
Evaluating the Risk to 
Groundwater from 
Geologic Carbon 
Storage Projects 

Diana Bacon, Ph.D., LHG

Pacific Northwest National Laboratory

Ground Water Protection Council Annual Forum

September 16, 2019

PNNL-SA-147201



2

• Revisit characterization data 
and modeling from Class VI 
permit application

• Apply NRAP tools to determine 
risk-based
• Area of  Review

• Monitoring Design

• Post-Injection Site Care Period

FutureGen 2.0 Case Study
UIC Class VI Permit Application
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Risk-based AoR and Monitoring Design
Using NRAP-Open-IAM and DREAM
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• The area surrounding the injection project 
where groundwater resources may be 
endangered by the activity (i.e., project risk 
area)

• EPA requires operators applying for a Class VI 
CO2 injection permit to determine the AoR
based on the separate-phase CO2
plume/pressure evolution predictions from 
physics-based computational modeling

• AoR is delineated by the maximum extent of  
CO2 plume and pressure front over the lifetime 
of  the project to account for risks associated 
with both CO2 and/or brine leakage into the 
overlying groundwater aquifer

Area of Review (AoR) for CO2 Storage 
Sites
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• The critical pressure that can cause fluid flow 
from injection zone into the groundwater aquifer 
through a hypothetical conduit

• Under-pressurized conditions:
• Simple mass balance calculation (Birkholzer et al., 2011) 

assumes density of  the fluid in the wellbore is uniform and 
equal to the density in the injection zone 

• Hydrostatic conditions:
• Displacement of  the existing fluid in the borehole (Nicot et 

al., 2009)

Pressure Front (Under-Pressurized or 
Hydrostatic Conditions)

𝜉 =
𝜌𝑖 − 𝜌𝑢
𝑧𝑢 − 𝑧𝑖
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• Determination of  an “allowable pressure increase” (EPA Guidance) that 
prevents fluid leakage into the aquifer and impact on the water quality

• Calculated based on:
• A multiphase numerical model designed to model leakage through wellbore(s) 

• A numerical or analytical approach to determine the threshold above which an impact to 
aquifer occurs

Pressure Front (Over-Pressurized Conditions)
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P > Pinitial

Aquifer impact ≠ 0
Threshold pressure = (P-Pinitial)

Hypothetical open boreholes

Injection well

P > Pinitial

Aquifer impact = 0 
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• Mt. Simon: Over-pressurized 
reservoir with respect to the 
lowermost USDW

• Pressure front and AoR
determined by EPA 
• Based on 10 psi critical pressure

Area of Review Determination at FutureGen 2.0 Site
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Injection 
wells

CO2 Plume

AoR Determined 
by EPA
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• Base AoR delineation on impact to the 
aquifer if  a well is placed at a particular 
location

• Loop through all X,Y locations in 
reservoir model layer
• Find pressure and saturation in reservoir model
• Use Open Wellbore model to determine CO2

and brine leakage rates to aquifer
• Calculate pH and TDS impact volumes vs. time 

and location

• Map maximum pH and TDS impact 
volumes on X,Y grid for each realization

• Calculate probability of  aquifer impact 
for each grid location

AoR Determination Using NRAP-Open-IAM
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• Area of  potential aquifer 
impact predicted to be 
smaller than AoR based on 
10 psi critical pressure

• Results sensitive to model 
assumptions
• wellbore diameter 

• impact threshold

• duration of  leak

AoR Comparison

AoR
determined by 
EPA using 10 

psi critical 
pressure

Risk-based 
AoR
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Analytical Detection Range 

and Precision*

Parameter Min Max Precision +/-

Pressure, psi 0 2500 0.065%

Temperature, F 0 150 0.03%

DIC, mg/L 0.2 -- 20%

pH 2 12 0.2

TDS, mg/L 10 -- 10%

Detection Thresholds

*From UIC Permit application, Attachment C, Tables A.5 & A.7
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Identify Potential Leakage Paths within AoR

4.5 miles45 miles

Potential Leaks
Potential Leaks
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• Several potential leakage 
paths, which is optimal 
monitoring location for 
earliest detection? 

• Assume wellbore 
permeability distribution 
based on observed values for 
legacy wells

Risk-based Monitoring Design 

Thief zone

Thief zone

ACZ

USDW
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• Original monitoring plan: 2 ACZ 
wells and 1 USDW

• DREAM optimized monitoring 
plan: 2 ACZ wells

Monitoring Design
Summary & Conclusions
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St. Peter 4.9 16.7

New Richmond 3.9 15.7

Potosi 2.9 14.7

Ironton 1.6 12.6

• Over $10M in avoided costs for 
installation, sampling, and 
decommissioning of  the third 
well

• Potential leaks much smaller in 
USDW than thief  zones
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Opportunity to demonstrate performance-based PISC

• As a first-of-its-kind project, U.S. EPA 
recommended  the use of  the default 50-year 
PISC period for the UIC Class VI permit 
application

• To close a site the Class VI regulations require 
demonstration of  non-endangerment

• FG 2.0 did not take credit for projected reservoir 
performance in determining a PISC period
• CO2 plume projected to stabilize 2 years after injection 

stops

• Reservoir pressure projected to decline rapidly post-
injection
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• NRAP-Open-IAM realizations 
indicate that the majority of  risk 
of  endangerment to USDWs 
occurs during injection period

• A 10 year PISC period would still 
lead to a net PISC period 
reduction of  40-years and an 
operational cost reduction in 
excess of  $50M for the project

PISC Period
Summary & Conclusions
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• Risk-based Area of  Review calculated using NRAP-Open-IAM based on 
potential aquifer impacts

• Risk-based monitoring design using DREAM resulted in simpler 
monitoring well design

• NRAP-Open-IAM can be used to define a risk-based, and substantially 
shorter, PISC period for the site

Summary
Application of NRAP-Open-IAM and DREAM to FutureGen 2.0
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