

Mechanical Integrity Testing Workshop

Elwood Vogel, Brian Pfeiff Technical Advisor's Halliburton Oklahoma City, OK Sept 15th, 2019

HALLIBURTON

Wireline & Perforeting

Cementing

Safety Moment!

- With wild swings in Temperatures about to start happening this time of year.
- Keep your tire pressure within the recommended range for your vehicle.

Agenda

- Introduction to Open Hole Logging
- Primary Cementing 101
- Interpreting Cement Evaluation Tools
- Remedial Cementing 101
- Casing Inspection 101
- New Technologies

Introduction to Open Hole Logging Electric Well Logging

Open Hole Logs, What Information Do We Want To get. Everything!

What we usually get!

 $Volume_{Total} = V_{RM} + V_{SH} + V_{W} + V_{HC}$

Open Hole Borehole Conditions

	h	: Bed Thickness
	hmc	: Mudcake Thickness
	d	: Diameter of Invasion
	'	(step profile)
	dh	: Borehole Diameter
	d _{zf}	: Diameter of Flushed Zone
	dzt	: Diameter of Transition Zone
1	D	Mud Deelethatha
	н _m	Mud Hesistivity
	Rmc	: Mudcake Resistivity
l	Rmf	: Mud Filtrate Resistivity

- Rs : Adjacent Bed Resistivity
- R_t : True Resistivity R_{xo} : Flushed Zone Resistivity R_w : Formation Water Resistivity

- S_h : Hydrocarbon Saturation S_w : Water Saturation S_{xo}: Flushed Zone Water Saturation S_{hr}: Residual Hydrocarbon Saturation

Gamma Ray

Gamma Ray Detection

- Passive Detection
 - Geiger-Mueller Detectors
 - Scintillation Detectors
 - Detect Naturally Occurring Gamma Ray

GR Environmental Corrections

- Corrections
 - Borehole Diameter
 - Mud Weight
 - Washout
 - Standoff
 - Tool Position

Gamma Ray

Porosity

Neutron Apparent Porosity

-5 -5

♦_{NLS} , Neutron Limestone Porosity (%)

Sonic Apparent Porosity

- Measures Sound Travel Time
 - ΔTc is Delta Time for P-wave
 - ΔTs is Delta Time for S-wave

$$\phi_{Sonic} = \frac{\Delta t Log - \Delta t Matrix}{\Delta t Fluid - \Delta t Matrix}$$

Resistivity

Resistivity

- Matrix material High resistivity
- Oil High resistivity
- Gas High resistivity
- Formation waters <u>Usually</u> Low resistivity
- Water-based mud filtrate can be Low or
- Oil-based mud filtrate High resistivity

High resistivity

- Resistivity
 - Hydrocarbon Indicator
 - Invasion Indicator
 - Shale Indicator
- Rt
 - Environmentally Corrected Deep Resistivity

Formation Dip, Imaging, etc.

Micro Imager

Circumferential Acoustic Scanning

If There is a Problem Production Engineering Will Fix It!

© 2018 Halliburton. All rights reserved.

Cementing 101

HALLIBURTON

Oil and Gas Well Cementing Reasons

- Restrict fluid movement between formations
 - Manage formation pressures
 - Seal off zones (i.e. water, thief, producing)
- Bond and support the casing
 - Protect from corrosion
 - Protect from shock loads

Source: Society of Petroleum Engineers, Cementing Monograph Volume 4, 1990

Cement History

- Egypt
 - Plaster of Paris (CaSO₄ + Heat)
- Greece
 - Lime (CaCO₃ + Heat)
- Roman Empire
 - Pozzolam-lime reactions
- England
 - Natural Cement (1756)
 - Portland Cement (1824)
- United States
 - Portland Cement (1872)

Raw Materials

- Calcareous Material Source of lime (CaCO₃)
 - Limestone, Chalk, Coral, Cement Rock, Marble, Seashells
 - 70 to 80%
- Argillaceuos Material Source of silica (SiO₂)
 - Clay, Sand, Shale, Fly Ash, Volcanic Ash, Blast furnace slag
 - 20 to 30%
- Gypsum (CaSO₄·2H₂0)

Chemical Compounds in Portland Cement

Compound	Formula	Standard Designation
Tricalcium aluminate	3CaO· Al₂O₃	C ₃ A
Tricalcium silicate	3CaO·SiO ₂	C ₃ S
B-dicalcium silicate	3CaO·SiO₂	C ₂ S
Tetracalcium aluminoferrite	3CaO·Al ₂ O ₃ ·Fe ₂ O ₃	C ₄ AF

API Classifications of Cements

API Classification	Mixing Water (gal/sk)	Well Depth (feet)	Static Temp (°F)
A (Portland)	5.2	0 – 6000	80 – 170
B (Portland)	5.2	0 - 6000	80 – 170
C (High Early Strength)	6.3	0 – 6000	80 – 170
D (Retarded)	4.3	6,000 - 12,000	170 – 260
E (Retarded)	4.3	6,000 - 12,000	170 – 260
F (Retarded)	4.5	10,000 - 16,000	230 – 320
G (Basic)	5.0	0 – 8,000	80 – 200
H (Basic)	4.3	0 – 8,000	80 – 200
J	4.9	12,000 - 16,000	260 – 330

Slurry Additives

- Accelerators
- Retarders
- Fluid Loss
- Dispersants
- Light Weight
- Heavy Weight
- Defoamers
- Lost Circulation
- Free Water
- Bond Improving

Purpose of Cementing

- Zonal Isolation
 - Well Control
 - Protects the environment
 - Prevents blowouts
- Casing protection against
 - Corrosion
 - Drilling Shocks
 - Burst/Collapse
- Strengthen Casing
- Plug/Abandonment

Material Storage

- Bulk Silos
- Sacks/Pallets

Scale and Blending

- Cement and additives are measured Scale Tanks have scales to monitor by weight
 - tank weight
 - Bend tanks used as "Mixing pots"

Admix Hopper

- The additives that are not stored in bulk are added to the scale tank threw the admix hopper
- Material dumped via bag directly into hopper
- Uses vacuum to move materials over to the scale tank.

Control System

- Entire process controlled from one station
- PLC Controlled fully automated
- Air Compressors
 - one to pressure up the tanks
 - one to pull vacuum
 - a high pressure compressor to open and close valves

Loading Procedure The 1/3, 1/2, 1/3, 1/2, 1/3 Loading Method

"Sandwich"	
	/
Bulk	
Additives	
Bulk	
Additives	
Bulk	

Cement Placement: Process Basics

- High-rate mixer blends cement, water and chemicals into a slurry
- The slurry is pumped down through steel casing, then up through the annulus

Cement Placement: Process Details

Society of Petroleum Engineers, Cementing Monograph Volume 4, 1990

- Plug separates cement slurry from the well fluids to keep it from being contaminated
- Like a squeegee, plug helps displace the cement, forcing it cleanly through casing

Equipment

Interpreting Cement Evaluation Tools

Cement Bond Types and Tools

• Two basic cement bonds

- Pipe to cement bond
- Cement to formation bond
- Two basic types of cement evaluation tools
 - Sonic
 - Conventional cement bond log (CBL)
 - Cement to formation bond
 - Cement to casing bond
 - Modified CBLs for expanded casing to cement evaluation.
 - Ultrasonic
 - Casing to cement bond and Casing Inspection

Standard Cement Bond Tools

- Cement Bond Log (CBL)
 - Circumferential averaged bond
 - Cement-to-Pipe bond
 - Amplitude
 - Attenuation
 - Acoustic waveform
 - Cement-to-Formation
 - Acoustic waveform
- Radial Bond Log
 - Amplitude

Cement Bond Log CBL

- Cement Bond Log (CBL)
 - Single transmitter
 - Two receivers
 - Circumferential averaged data
 - Omni-directional transmitter and receivers
 - No indication of radial continuity of bonding or channels
- Physics of measurement
 - Transmitted energy
 - No practical mud weight limitation

Cement Bond Log (CBL) Measurements

- Data from the 3 foot receiver
 - Pipe amplitude
 - Attenuation
 - Transit time or travel time
- Data from the 5 foot receiver
 - Waveform data

Compressional Wave P-Waves

• The only mechanism of acoustic energy transport in gases and liquids.

Shear Wave S-Waves

 Common mechanism of energy transport for ridged bodies and for surfaces

Amplitude and Travel Time

TRAVEL TIME

AMPLITUDE

- Attenuation
 - Inversely proportional to Amplitude
 - How fast the signal will die out
 - Low Attenuation = lack of cement
 - High Attenuation = cement

mV

Amplitude

- Measured at one receiver 3 feet away from the transmitter
- Indication of pipe to cement bond
- Used in determination of cement bond index

$$BI = \frac{\log(A_{fp}) - \log(A_{ls})}{\log(A_{fp}) - \log(A_{100\%})} \qquad BI_{linear} = \frac{(A_{fp} - A_{ls})}{(A_{fp} - A_{100\%})}$$

BI = bond indexAfp = free pipe amplitudeAls = the measured amplitudeA100% = what is considered to be 100% bonding

Typical Amplitude and Travel Time Readings

CASING	CASING WEIGHT (lb/ft)	TRAVEL TI	AMPLITUDE	
SIZE (in)		1-11/16" TOOL	3-5/8" TOOL	(mV)
4-1/2	9.5	252	233	81
	11.6	250	232	81
	13.5	249	230	81
	15.0	257	238	76
5	18.0	255	236	76
	20.3	253	235	76
	15.5	266	248	72
5-1/2	17.0	265	247	72
5 1/2	20.0	264	245	72
	23.0	262	243	72
7	23.0	291	271	62
	26.0	289	270	62
	29.0	288	268	62
	32.0	286	267	62
	35.0	284	265	62
	38.0	283	264	62
7-5/8	26.4	301	281	59
	29.7	299	280	59
	33.7	297	278	59
	39.0	295	276	59
9-5/8	40.0	333	313	51
	43.5	332	311	51
	47.0	330	310	51
	53.5	328	309	51
10-3/4	40.5	354	333	48
	45.5	352	332	48
	51.0	350	330	48
	55.5	349	328	48

Waveform Data

- Provides the basic data for evaluating the quality of the cement sheath
- Delineate cemented from non-cemented sections by interpreting waveforms of acoustic signals
- Horizontal measurement is in time

Wellbore and Waveform Response

Traditional CBL Waveform Displays

- CBL Waveform
- Clipped Travel Time
- MicroSeismicGram (MSG) or Variable Density Log (VDL)

56

Free Pipe

 Travel time indicates free pipe and good centralization

Radial Bond Log

- CBL with an additional sectored receivers
- Provides information on radial continuity of bonding or channels
- Depending upon the above
 - Sectors roughly 2 feet from source
 - 3 ft from source
- Six radial amplitude measurements for 1 11/16" tool.
- Eight radial amplitude measurements for larger tool 3 1/8" tool.
- Some tools have relative bearing sensor
 - High side and low side of hole determination

Radial Bond Tool Waveforms

Radial Bond Log

 With the higher frequency of the radial bond tool, changes in the cement are indicated by changes in the waveform amplitude

Advanced Cement Bond Tools Rotating Ultrasonic Transducers

• CAST-F, CAST-M, USIT

- Cement and casing inspection
 - Azimuthal cement-to-pipe bond
 - Casing inspection
 - Casing internal radius
 - Casing thickness
- Extensive horizontal coverage
 - 100% horizontal coverage (CAST-F, CAST-M)
 - 36, 72, or 100 Measurements Per Depth (USIT, CAST-V)

Ultra Sonic Cement Evaluation Tools

- Physics of Measurement
- Reflected Ultrasonic energy
 - Two way travel time
 - Casing radius
 - Amplitude of reflected waveforms
 - Casing inspection
 - Frequency of reflected waveforms
 - Casing thickness
 - Evaluation of reflected waveforms
 - Cement evaluation
- Mud weight and type limitation
 - Solids weighting material attenuates the ultrasonic signal
 - Signal attenuation in OBM ≈14-16 ppg.

Ultrasonic Wave Propagation

|--|

Material	$V_p(\rm km/s)$	$V_s ({\rm km/s})$	$ ho_b~({ m gm/cc})$	Z (MRayls)
Fresh water	1.52	0	1.00	1.52
Salt water (200 Kppm)	1.74	0	1.14	1.98
Diesel oil	1.25	0	0.80	1.00
Mineral oil	1.45	0	0.83	1.2
Free gas (mostly methane)	0.38	0	0.001	0.1
Water-based drilling fluid (8 lb/gal)	1.44	0	0.96	1.38
Water-based drilling fluid (16lb/gal)	1.40	0	1.92	2.69
Oil-based drilling fluid (8 lb/gal)	1.34	0	0.96	1.29
Oil-based drilling fluid (16 lb/gal)	1.20	0	1.92	2.30
10% Porosity sandstone	4.66	2.91	2.49	11.60
30% Unconsolidated sands	3.31	1.94	2.16	6.42
10% Porosity limestone	4.91	2.73	2.54	12.47
10% Porosity dolomite	5.24	3.06	2.68	14.04
Class H cement (121b/gal)	3.1	1.8	1.55	4.8
Class H cement (16.6lb/gal)	3.20	1.90	1.94	6.21
Lightweight cement (91b/gal)	3.10	1.80	1.55	4.81
Steel	5.90	3.23	7.70	45.43

 Table 10-1
 Acoustic parameter values

CAST and CBL

Bonded Pipe

Cement Evaluation Theory (*ART)

- CBL, Sonic
 - Amplitude
 - High indicates free pipe
 - Low indicates cement
 - Waveform
 - High activity indicates cement
 - Low activity (railroad tracks) indicates free pipe

• Ultrasonic Tools

- Impedance
 - High impedance indicates cement
 - Low impedance indicates free pipe

Quality Control for Cement Evaluation Tools

- All tools need to be very well centralized
- Each tool will have traces that will relate to QC
- Environmental Effects on Logs
 - Thin cement sheaths
 - Microannulus
 - Borehole shape
 - Fast formations
 - Cement curing time
- Garbage in = Garbage Out

Tool Decentralization Effects for 1-11/16" CBL Tool

Attenuation Rate vs. Cement Thickness

Which Cement Evaluation Log is Correct?

The CBL or Scanner?

Both! Cement Sheath IS Very Thin.

ACE Analysis

ECTY 0 1 GAMMA 0 150 AVZ 10 0	AMPLIFIED AMPLITUDE 0 10 AMPLITUDE 0 70 FCBI 1 0 FCBIDZ 1 0	CBL WAVEFORM	TOTAL CBL WAVEFORM	IMPEDANCE IMAGE	DERIVATIVE IMAGE	CEMENT IMAGE
DZAVG	FCEMBI	WMSG	WMSGT	ZP	DZ	CEMT
10	10	-20 20	-1 15	0 6.15	0 0.6	0 1

Caliper and Bonding

Cement Curing

Collar Responses

Free Pipe

Remedial 101

HALLIBURTON

- Why are we squeezing
- Shut off water or gas
- Abandon zone
- Temporarily seal off zone
- Injection Profile Modification

HALLIBURTON

- Why are we Squeezing
- Repair channel
- Isolate prior to perforating
- Insufficient top of cement
- Repair casing leak

- Do we need to squeeze now or wait?
- Cost Considerations
- Equipment
- Time Delays
- Well Construction Plans
- Cost

- What criteria should we use for determining the need to do a squeeze job?
- Sonic evaluation logs
- Primary cement job design
- Primary cement job performance
 - Flow rate
 - Centralization
 - Mud Properties
 - Lost returns during job
- Experience
- Offset well data

- Will a squeeze job do what we want it to do?
- All channels will be filled with some fluid or mud cake
- Mud must be displaced from channels for squeeze to be effective
- Most channels can not receive cement under squeeze pressure

Squeeze Cementing Myths

HALLIBURTON

© 2018 Halliburton. All rights reserved.

Myth – Cement Slurry Enters the Formation Matrix

- Cement average particle size 20-50 microns
- > 2000 md formation permeability required

Fact –

Cement particles are too large to enter the matrix of most formations

Myth – Squeeze Cementing Produces a Horizontal Pancake of Cement

- Fracture orientation is normally vertical rather than horizontal
- Fracture may be an angle to the wellbore in deviated wells

HALLIBURTON

© 2018 Halliburton. All rights reserved

Tri-Axial Loading of Rocks

- Fracture orientation is perpendicular to the least principle stress
- Least principle stress is normally horizontal
- Most induced fractures are vertical

© 2018 Halliburton. All rights reserved.

Myth – All Perforations are Open During Injection

Fact

- Perforations may be partially plugged
- Injection pressure of perforations varies
- Cement will take the path of least resistance

Myth – High Final Squeeze Pressure is Necessary

Fact

- Final Squeeze Pressure Does not Need to Equal Future Working Pressure (Why?)
- Squeeze Pressure is Applied Across Node Before Cement Develops Compressive Strength
- Fracture May be Created
- Productivity May Be Damaged
- High Pressure Does not Insure Placement in Desired Location

© 2018 Halliburton. All rights reserved.

SQUEEZE TECHNIQUES

HALLIBURTON

Squeeze Techniques

- Pressure to Squeeze
 - High Pressure Squeeze
 - Low Pressure Squeeze
- Pumping Techniques
 - Hesitation Squeeze
 - Running or Walking Squeeze
- Placement Techniques
 - Squeeze Packer
 - Bradenhead (Including Coiled Tubing)

High Pressure Squeeze

Surface Pressure + Displacement Fluid Hydrostatic + Cement Slurry Hydrostatic = Total Bottom Hole Pressure <u>Greater Than</u> Formation Fracture Pressure

© 2018 Halliburton. All rights reserved.

Low Pressure Squeeze

Surface Pressure + Displacement Fluid Hydrostatic + Cement Slurry Hydrostatic = Total Bottom Hole Pressure <u>Less Than</u> Formation Fracture Pressure

HALLIBURTON

Squeeze Techniques

- Pressure to Squeeze
 - High Pressure Squeeze
 - Low Pressure Squeeze
- Pumping Techniques
 - Hesitation Squeeze
 - Running or Walking Squeeze
- Placement Techniques
 - Squeeze Packer
 - Bradenhead (Including Coiled Tubing)

Hesitation Squeeze

"Running/Walking" Squeeze

Squeeze Techniques

- Pressure to Squeeze
 - High Pressure Squeeze
 - Low Pressure Squeeze
- Pumping Techniques
 - Hesitation Squeeze
 - Running or Walking Squeeze
- Placement Techniques
 - Squeeze Packer
 - Bradenhead (Including Coiled Tubing)

Squeeze Packer Method

- Retrievable or drillable squeeze packer set above injection point
- Isolates casing above packer from squeeze pressure
- Higher squeeze pressure possible
- Annular pressure can be applied

© 2018 Halliburton. All rights reserved.

Bradenhead Method

- Spot cement across squeeze interval
- Pull workstring above cement top
- Close BOP/Bradenhead & reverse tubing clean
- Apply squeeze pressure

Disadvantages

- Casing exposed to squeeze pressure
- Limited squeeze pressure

Advantages

- Cost reduction
- Wash cement out of casing

Coiled Tubing Method

- Form of Bradenhead
- Inside Production Tubing
- Higher Pressure Possible
- Improved control of slurry placement

Squeeze Slurry Design

HALLIBURTON

Squeeze Slurry Design Considerations

- Application Temperature
 - API Squeeze BHCT
 - Other factors
- Thickening Time
- Fluid Loss Control
 - HP vs. LP Squeeze applications
 - Multiple perforations
- Static Gel Strength
- Spacers

Fluid Loss Control vs. Filter Cake

1000 cc - Neat Cement Slurry

300 cc Fluid Loss Slurry

75 cc Fluid loss Slurry

25 cc Fluid Loss Slurry

Ultra-Fine Cement

- Penetration into small leaks, gravel packs, etc.
- Casing Leaks where there is low injection rate
- Behaves like Portland cement
- Average particle size around 10 micron

Tool Selection

- Squeeze Packers
 - Drillable
 - » Cast Iron
 - » Composite
 - Retrievable

Tool Location

- Set in cemented casing when possible
- Close to interval to minimize cement drill-out
- Adequate distance from perfs for staging volume
- Displace tubing volume before staging
- Safe distance from perfs to prevent casing collapse

Job Execution

- Well preparation
 - Well fluid circulated and balanced
 - Perforations open
- Pressure test surface treating lines, work-string, and tools to maximum expected pressure
- Use clean workover fluids for injection

Squeeze Applications

HALLIBURTON

Block Squeeze

- Performed to isolate zone
- Perforate & squeeze below zone
- Perforate & squeeze above zone
- Drill out & test
- Difficult to remove trapped fluid/mud
- Avoid Fracturing
- Questionable practice

Circulation Squeeze

- "Suicide Squeeze"
- Drillable tool set between perforations
- Circulation path back into casing above
- Improved channel cleaning
- Possibility of sticking
- Possibility of casing collapse

Abandonment Squeeze

- Retainer set high to meet regulatory plugging requirements
- Perform low pressure squeeze through retainer
- Sting out & dump cement on top of retainer

Channels

- Channel must be clear of mud
- Allow production to clean channel if possible
- Clean channel with acid or chemical wash
- Perform low pressure squeeze
- Inject into production perfs or adjacent to problem zone

Unwanted Production

Initial

Water coning from below

- Gas cap production due to depletion
- Channels
- Vertical fractures
 - Natural
 - Created
 - High vertical permeability

© 2018 Halliburton. All rights reserved.

Current

Corrosion Holes

- Often occur above cement top
- May require multiple stages
- Caution with tools due to weak or enlarged casing
- New holes can be created during squeeze
- Use low pressure squeeze

Casing Split

- Often occurs above cement top
- May require multiple stages
- Caution with tools due to restrictions or enlarged casing
- Split length may increase during squeeze
- Use low pressure squeeze

Liner Top

- Poor mud displacement during primary cement job
- No cement returns to liner top
 - Solids bridging
 - Losses due to high ECD
 - Planned Tack & Squeeze

Re-Cementing

Displacement Plug

Packer

- Raise the top of cement
- Displacement plug method
- Packer method (drillable)
- Circulate to surface to condition/clean annlus
- Use large volumes of flush/spacer
- Mod/Low fluid loss cement
- Casing collapse possible with packer method

Fractured or Vugular Zones

- Multiple stages likely
- Lead or first stage
 - Lost circulation material
 - High fluid loss cement
 - Thixotropic cement
 - Foam cement
 - Quick setting cement
 - Reactive pre-flushes
- Second stage
 - Low fluid loss cement

Long Perforated Interval

- Difficult to inject into all perforations at once
 - Acid wash optional
- As perforations are squeezed others will take fluid
- Low pressure squeeze
- Low fluid loss, extended TTT, low/slow SGS
- Ball sealers optional
- Spot cement across entire interval with Coiled Tubing or tailpipe

Collar Leaks

- Often extremely low injection rate
- Treatment systems
 - Internally catalyzed treatments
 - Microfine cement
 - Resin

Casing Inspection 101

Multi-Finger Caliper TOOLS

24 finger MFC – 1.75" to 4.5" range Finger Spacing 0.229" to 0.589"

40 finger MFC - 3.0" to 7.5" range Finger Spacing 0.236" to 0.589"

60 finger MFC – 4.5" to 9 5/8" range Finger Spacing 0.236" to 0.504"

80 finger MFC – 8.5" to 16" range Finger Spacing 0.334" to 0.628"

MFC EXAMPLE

MAXDIA (in)	8
MINDIA (in)	8
AVEDIA (in)	8
MITDEV (°)	20
MITROT (")	360
LSPD (ft/min)	-50
CENTOFF (in)	1
	MAXDIA (in) MINDIA (in) AVEDIA (in) MITDEV (*) MITROT (*) LSPD (ft/min) CENTOFF (in)

1.5	FING01 (in)	5.5
1.45	FING02 (in)	5.45
-0.4	FING39 (in)	3.6
-0.45	FING40 (in)	3.55

COMPARING VIDEO & MFC DATA

Crushed Casing (not the same well)

SCALE DEPOSITION & REMEDIAL WORK

Casing Inspection Ultrasonic Scanners

CASE Post Processing

FASTCASE 7 inch liner

There is a single (large) hole with thin wall areas adjacent to the hole

FIGURE 10. A CAST 3-D reconstuction of a cased hole downhole assembly in a horizontal well with a close up of a sliding sleeve seen in the closed position.

Slotted liner damage as seen by CAST[™] in casing inspection mode

Lost Circulation Challenges

- Lost circulation is the biggest non-productive cost in the industry today
 - 10-30% of all drilling NPT attributable to losses and wellbore instability
- Lost circulation occurs from:
 - Highly permeable formations
 - Naturally fractured formations
 - Cavernous formations
 - Induced fractures
- Resulting in:
 - Anything from seepage to total losses

BridgeMakerTM II Lost Circulation Material

HALLIBURTON
What is BridgeMaker[™] II Lost Circulation Material?

- A special pre-blended LCM designed for use in spacers, but works equally well in cement
- Bridges across a broad range of fracture widths
- Carefully composed for optimum performance and suspension for spacer and cementing fluids
- Tested for problem-free pumping though float equipment
- Environmentally Friendly North Sea compliant

Cementing New Technology

© 2018 Halliburton. All rights reserved.

BridgeMaker™ II Lost Ciruclation Material – Properties

- Physical Properties
 - Blend SG = 1.71
 - Bulk Density 0.49-0.65 SG (31-40 lb/ft3)
- Temperature Limits
 - Upper limit 347°F (175°C) short term (4 – 6 hours)
 - Upper limit 302°F (150°C) medium term
- Recommended Loading
 - Add 30-80 kg/m3 or 10-28 lb/bbl for primary cementing operations

- Bridging Capabilities
 - Easily plugs fracture widths up to 1000μ at 1000 psi ΔP deposit pressure
 - At higher concentration plugs 1500μ at 1000 psi ΔP deposit pressure
 - Lower deposit pressure allows better plugging
 - Can withstand at least 1500 psi ΔP once deposited
- Secondary Effects
 - Moderate effect on fluid viscosity can establish correction factor
 - No impact on wettability

BridgeMaker[™] II Lost Circulation Material– Performance – LCM Test Cell

- Performance tested in I CM test cell (modified to handle coarse materials)
 - Slotted disks
 - Instant pressure application (N2 over floating piston)
 - Room temperature
 - Record spurt loss and time

Disks used for the testing:

500µ flat disk

© 2018 Halliburton. All rights reserved.

1000µ flat disk

1500µ flat disk V-slot disk

1000µ -1500µ

BridgeMaker™ II Lost Circulation Material – Other Applications

- What if I want to use as LCM for stopping losses?
- When mixed in 1.60 SG TSE+ maximum concentration is
 - ±260 kg/m3
 - ±91 lb/bbl
- Suspends well in fluids with viscosity
 - Econolite[™] Additive liquid
 - Unweighted spacers
 - Needs filler material to plug properly

Example – use with no filler: 80 kg/m3 in TSE+ 1.06 SG → Spurt loss 268 ml Flow 1.45 SG lead slurry after, no fluid loss control → Spurt loss 8 ml

 \odot 2018 Halliburton. All rights reserved.

Tuned Defense Cement Spacer

CUSTOMER CHALLENGE

HALLIBURTON SOLUTION – Tuned® Defense™ Cement Spacer

Next-generation adjustable rheology cement spacer with lost circulation capabilities to maintain wellbore stability

- Achieve planned top of cement
- Effective mud displacement
- Enable a dependable barrier to maximize production

Eliminate Seepage

Prevent severe losses

What do you want from a cement spacer?

Fluid Separation Lost Circula Contro Tuned[®] Defense[™] Hole Cleaning **Cement Spacer** Compatibility The Industry's best cement spacer just got better.

Tuned® Spacer Portfolio

- Industry leading spacer systems system for over 22 years
- Used in over 11,000 cement jobs per year

What Makes Tuned® Defense[™] Cement Spacer Unique? Seepage to partial loss control

© 2018 Halliburton. All rights reserved.

What Makes Tuned® Defense[™] Cement Spacer Unique? Up to Severe Loss Control

Tuned® Defense™ Cement Spacer Technical Capabilities

- Up to 325°F*
- Up to 19 ppg density
- Non-damaging to the formation
- Able to seal pores up to 500 microns
- Combines with BridgeMaker[™] II LCM to plug fractures up to 3000 microns

* DefenseMod™ 325 Additive may be used above 300°F

Tuned® Defense™ Cement Spacer Test Procedures

A spacer's ability to control losses can be tested and verified.

- Fluid Loss Cell
 - Same apparatus used for API Fluid Loss testing
 - 250 micron screen (60 mesh)
 - 1000 psi pressure

- Particle Plugging Apparatus (PPA)
 - Common apparatus in drilling fluid labs
 - 500 to 3000 micron slots
 - 1000 psi pressure

Tuned[®] Defense[™] Cement Spacer Demonstration

Conventional Spacer without loss control

Tuned® Defense™ Cement Spacer with loss control

© 2018 Halliburton. All rights reserved.

Tuned® Defense[™] Cement Spacer Operational Benefits

Increase confidence in achieving top of cement Avoid remediation Minimize non-productive time Lower overall operating costs

HALLIBURTON

159

Tuned® Defense[™] Cement Spacer Potential Applications

Permeable or fractured formations Narrow pore pressure/frac gradient margins Fields with history of losses Areas with strict top of cement requirements

SentinelCem[™] Cement

© 2018 Halliburton. All rights reserved.

What is SentinelCem[™] Cement?

What It Is:

- A Dependable Barrier for Losses that uses Chemistry rather than Physical Mechanisms (LCM)
- A highly-thixotropic cement slurry with Low Solids Content and High Yield
- Acid Soluble System

What It Does:

- Can cure Total Lost Circulation
- Can be pumped through the drilling BHA
- Enables deeper formation penetration

What It Means:

- Minimizes risks of cost overruns and NPT
- Allows Operator to continue drilling ahead
- Enables access to deeper reservoirs previously inaccessible

© 2018 Halliburton. All rights reserved.

Why SentinelCem[™] Cement?

Features

- Lightweight slurry density 10 ppg
- Low percentage of solids ~10% by volume, ~20% by weight
- Rapidly gels when pumping is stopped, yet becomes pumpable again when shear is returned.
- Acid soluble

© 2018 Halliburton. All rights reserved.

Benefits

- Reduced hydrostatic on weak formations
- Allows for pumping through the Drilling BHA
- Maximum penetration into the loss zone maximizes the chance of success to cure the losses
- Can be used in production reservoirs

Case Study:

SentinelCem[™] Cement Placed Using the BHA Solves Total Lost Circulation

Operator Challenge

 Over 500 bbls/hour of Total Losses were experienced during drilling in the Llanos Basin in Colombia.

Solution

- SentinelCem[™] cement due to the shear-rate dependent rheology.
- Low viscosity during pumping enabled placement via drilling BHA.
- Rig-time was reduced by avoiding additional trips.

Results

- Circulation was re-established on three different wells with total losses.
- Avoided the need for remediation.
- Operator saved \$250,000 (USD) per well in rig time and mud recovery

© 2018 Halliburton. All rights reserved

Tailoring SentinelCem[™] Cement Designs

- SentinelCem[™] cement is a low complexity slurry
- Low sensitivity to mild changes in BHCT
- All standard API lab testing applies
- Additional Considerations
 - Use FYSA to measure rheology
 - Always perform On-Off-On Thickening Time tests

© 2018 Halliburton. All rights reserved.

SentinelCem[™] Cement – Highly Thixotropic Behaviour

- When pumping stops, slurry gels rapidly.
- When pumping continues, the slurry re-establishes liquid form

© 2018 Halliburton. All rights reserved.

SentinelCem[™] Cement – Highly Thixotropic Behaviour

• When kept under continuous shear, SentinelCem[™] cement can be pumpable for >24 hours

© 2018 Halliburton. All rights reserved.

HALLIBURTON

Electromagnetic Pipe Xaminer

Electromagnetic Pipe Xaminer[®] V (EPX[™] V) Performance Specifications

General Tool Specifications	English	Metric
Tool Length	17.34 ft	5.28 m
Tool OD	1.69 in.	42.93 mm
Tool Weight	87.00 lb	39.46 kg
Maximum Pressure	15,000 psi	103 MPa
Maximum Temperature	350°F	176°C
Measurement Range		
Minimum Tubular OD	2.38 in.	60.45 mm
Maximum First Tubular OD for Maximum Resolution	7.00 in.	177.8 mm
Maximum First Tubular OD	24.00 in.	609.6 mm
Maximum Casing Size	24.00 in.	609.6 mm
Maximum Total Metal Thickness (current)	2.5 in.	63.5 mm
Thickness Measurement Accuracy and Detection		
1st Pipe Defect Detection	1%	
1 st Pipe (2 strings) Accuracy	2% or 0.015 in.	2% or .38 mm
Total Metal Thickness 1.2" (3cs)	7%	
Total Metal Thickness 1.8" (4cs)	10%	

Full-Resolution Array Optimization for Overlapping Defects

Overlapping defects in pipes 4 and 5

blue: actual red: inverted

ACX (Array Noise Tool)

Tubing and Casing

Gas-Lift Mandrel Leak

Radial Pick

- » Clear indication
- » Maximum deviation at depth of leak is 70°

Fiber Optics use for Cement Evaluation

Temperature Increase from Cement Curing

Temperature Increase between TOC and Intermediate casing is enhanced because the exothermic heat released by cement curing dissipated slower in this zone

PACERS Peak Analysis of CBL Waveform Radial Segmented
PACE (Peak Analysis for Cement Evaluation)

- The new technique uses the peaks and troughs of the waveform for analysis and a derivative process is used to determine the peaks and troughs.
- When the derivative changes sign is the peak or trough of that waveform, and the value of the waveform will be called a peak.
- This provides an automatic method of picking both the positive and negative peaks of the entire waveform.

CBL Waveforms

CBL Peaks

Stacked Absolute Value of the CBL Peaks

PACE (Peak Analysis for Cement Evaluation) Segmented Radial Shells

- Taking each region from each segmented PACE it is possible to create Shells1 – Shells 4
- The average amplitude reading from each Segmented PACE is used and interpolated to the next reading allowing an image to be created
 - If a RB curve is available all regions will be corrected
- Shell 1 is nearest to the wellbore while Shell 4 is further away

Peak Analysis of CBL Waveform Radial Segmented

Who to Contact, Where to get more information

