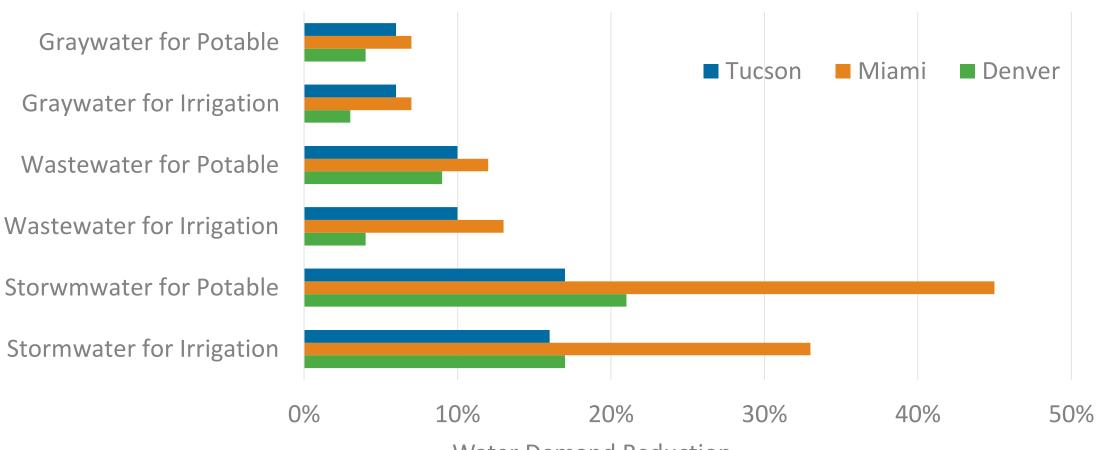


Connecting world class research with real-world water challenges

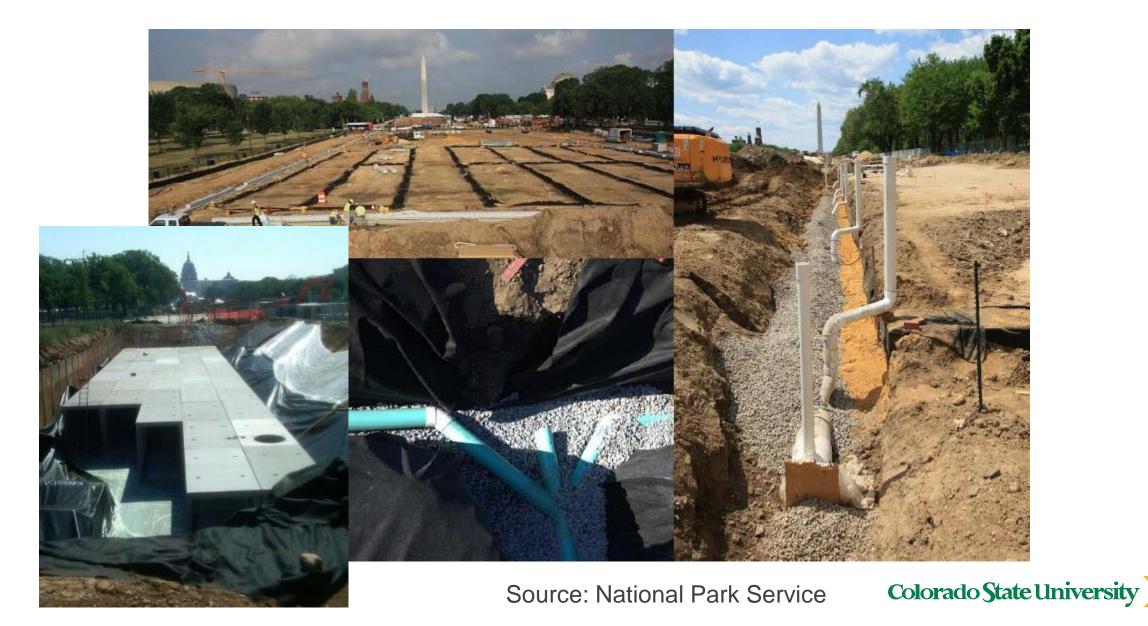
Colorado State University

K BENEFICIAL USE OF STORMWATER



Stormwater Quality and Treatment

Aquifer Recharge


Colorado State University 3

ALTERNATE WATER: DEMAND REDUCTION

Water Demand Reduction

WASHINGTON MALL PROJECT

5

WASHINGTON MALL PROJECT

Filtration (25 µm)

UV disinfection

Source: National Park Service Colorado State University

STORWATER USE WATER QUALITY

Water Quality Parameter		Unrestricted Irrigation				Indoor Use (Toilet Flushing or Laundry)		
	State of MN	District of Columbia	Los Angeles, CA	San Francisco, CA	District of Columbia	Los Angeles, CA	San Francisco, CA	
BOD ₅	NS	NS	10 mg/L	NS	NS	10 mg/L		
Turbidity	3 NTU	NS	2 NTU	2 NTU	NS	2 NTU	2 NTU	
TSS	5 mg/L	NS	10 mg/L	NS	NS	10 mg/L	NS	
рН	6 - 9	NS	6 - 9	NS	NS	6 - 9	NS	
Chloride	500 mg/L	NS	NS	NS	NS	NS	NS	
Zinc	2 mg/L (long term); 10 mg/L (short term)	15 mg/L	NS	NS	160 mg/L	NS	NS	
Copper	0.2 mg/L (long term); 5mg/L (short term)	NS	NS	NS	NS	NS	NS	
Pathogens/ Indicators	<i>E. coli</i> : 126 CFU/100mL	<i>E. coli</i> : 4615 CFU/100mL Crypto.: 0.033 oocysts/L	<i>E coli</i> : 2.2 CFU/100mL	Virus: 3.0-log reduction Protozoa: 2.5-log reduction Bacteria: 2.0- log reduction	<i>E. coli</i> : 50000 CFU/100mL Crypto.: 0.320 oocysts/L	<i>E coli:</i> 2.2 CFU/100mL	Virus: 3.5-log reduction Protozoa: 3.5-log reduction Bacteria: 3.0-log reduction	

ate University

ISSUES WITH END POINT WATER QUALITY TARGETS

- Does not consider source water quality (loading and type of pathogens)
- Monitoring of indicator organisms is problematic
 - Frequency
 - Assurance that viruses, bacteria and protozoa are sufficiently reduced

EXPOSURE SCENARIO

Activity	Туре	Ingestion (liter) per activity	Uses per year	Fraction of population	Reference
Toilet flush water	Ingestion of spray	0.00001	1100	1	(NRMMC et al., 2006)
Clothes washing	Ingestions of spray	0.00001	100	1	(NRMMC et al., 2006)
Unrestricted irrigation and dust suppression	Ingestion of sprays	0.001	50	1	(NRMMC et al., 2006)
Cross- connection of non-potable water with potable water	Ingestion	2 ^b	1	0.1	(NRMMC et al., 2006)

Final Report

Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems

QUANTITATIVE MICROBIAL RISK ASSESSMENT (QMRA)

Jahne, M., Schoen, M.; Ashbolt, N.; Garland, J. Simulation of Enteric Pathogen Concentrations in Locally-Collected Graywater and Wastewater for Microbial Risk Assessments. *Microbial Risk Analysis*, 2017, 5:44-52.

Schoen, M.; Ashbolt, N.J.; Jahne, M.; Garland, J, Risk-Based Enteric Pathogen Reduction Targets for Non-Potable and Direct Potable Use of Roof Runoff, Stormwater, Graywater, and Wastewater. *Microbial Risk Analysis*, 2017, 5:32-43.

LOG10 PATHOGEN REDUCTION TARGETS

	Log ₁₀ Reduction	Log ₁₀ Reduction Targets for 10 ⁻⁴ (10 ⁻²) / person•y Benchmarks					
Water Use Scenario	Enteric Virus	Parasitic Protozoa	Enteric Bacteria				
Domestic Wastewater or Blackwater (1000 persons)							
Unrestricted irrigation	8.0 (6.0)	7.0 (5.0)	6.0 (4.0)				
Indoor use	8.5 (6.5)	7.0 (5.0)	6.0 (4.0)				
Graywater (1000 persons)							
Unrestricted irrigation	5.5 (3.5)	4.5 (2.5)	3.5 (1.5)				
Indoor use	6.0 (4.0)	4.5 (2.5)	3.5 (1.5)				
Stormwater (10 ⁻¹ Dilution)							
Unrestricted irrigation	5.0 (3.0)	4.5 (2.5)	4.0 (2.0)				
Indoor use	5.5 (3.5)	5.5 (3.5)	5.0 (3.0)				
Stormwater (10 ⁻³ Dilution)							
Unrestricted irrigation	3.0 (1.0)	2.5 (0.5)	2.0 (0.0)				
Indoor use	3.5 (1.5)	3.5 (1.5)	3.0 (1.0)				
Roof Runoff Water							
Unrestricted irrigation	Not applicable	No data	3.5 (1.5)				
Indoor use	Not applicable	No data	3.5 (1.5)				

AQUIFER RECHARGE

Source: Fresno Metropolitan Flood Control District

CHEMICAL QUALITY

- Pollutants
 - Metals, nutrients, salts, hydrocarbons
 - Removed during percolation
 - Polar organic chemicals
 - Flame retardants, biocides, plastics
 - Predicted to migrate through vadose zone

AQUIFER RECHARGE: AUSTRALIA

- Microbial Risk
 - Risk assessment and management plan based on source water quality, groundwater quality, and inactivation
 - Credits for inactivation of pathogens
 - Pre-commissioning estimate based on literature inactivation times
 - Validation required for site specific decay rates
- Chemical Risk
 - In-situ or laboratory studies required to confirm attenuation of contaminants
- No standard design criteria exist in Australia or US

- Stormwater capture and use has high potential to reduce demand on traditional supplies
- Lack of guidance and regulation for treatment limit use of stormwater
- Aquifer recharge is attractive to foster use of stormwater
 - Limited guidance in US and Australia for design

Thank you.

• Contact

970.491.3016

- @ owsi@colostate.edu
- Ø owsi.colostate.edu

Home to eRAMS.com

Connecting world class research with real world water challenges

> Urban Water Systems Integrating management of water systems with urban planning

Water for Agriculture

Sustaining agricultural production in a changing world

Water and Energy

Exploring tradeoffs among interconnected water and energy systems

Ecosystem Services

Improving physical, chemical, and biological integrity of water systems

owsi.colostate.edu Colorado State University