Challenges Facing Class II Disposal Well Operations in the Appalachian Basin

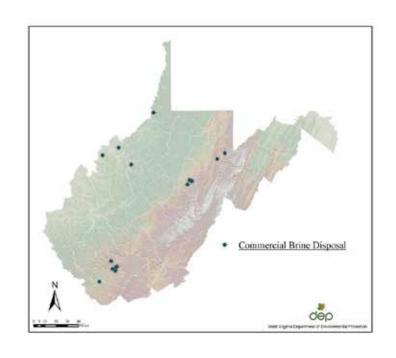
Prepared by: Thomas E. Tomastik, CPG and J. Daniel Arthur, P.E., SPEC, ALL Consulting

Presented at the 2019 Ground Water Protection Council UIC Conference, February 24-27, 2019, Fort Worth, Texas

Class II Development in the Appalachian Basin

- Water Management continues to be one of the biggest expenses for Marcellus and Utica shale operators, which has lead to the demand for increased Class II disposal capacity.
- With a small number of commercial disposal wells in West Virginia and lack of primacy in Pennsylvania, only Ohio remains well situated to handle the increase in Class II disposal well activity.

Source: ALL Consulting, 2018


Current Disposal Well Activity in the Appalachian Basin

- Currently, there are 45 Class II disposal wells permitted in West Virginia, 15 permitted in Pennsylvania, and 240 permitted in Ohio.
- Of the 45 Class II wells permitted in West Virginia, 44 are active and only 13 are considered commercial disposal wells.
- In Pennsylvania, currently only 12 Class II disposal wells are active and in operation.
- In Ohio, there are 219 active Class II disposal wells.

West Virginia Class II Disposal Well Regulations

- Must submit two complete permit packages UIC permit application and well work permit.
- Commercial disposal wells require increased security and fluid sampling of third party haulers.
- Class II disposal wells permits must be renewed every five years and application must be submitted six months in advance of permit expiration.

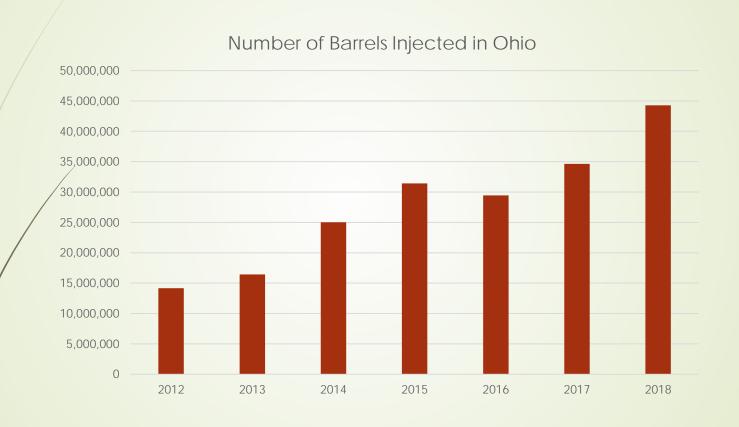
Source: WV DEP, 2013

Pennsylvania Class II Disposal Well Regulations


- Pennsylvania does not have primacy of its Class II program, so the initial permit goes through US EPA Region III.
- A second permit is required by PA DEP.
- There is strong opposition to Class II disposal in PA and appeals to the US EPA EAB and PA Hearing Board are common.
- Typically, it can take from three to five years to get these permits based on appeals and litigation.
- Injection volumes are limited to monthly volumes that range from 4,200 to 45,000 barrels per month.
- Seismic monitoring is now required.

Ohio Class II Disposal Well

Regulations


- Once a Class II disposal well is drilled or converted, a second permit to inject is issued.
- After the well has been authorized to inject, the permit remains valid for the life of the well.
- Seismic monitoring can be required.

Source: DOGRM, 2019

Ohio Class II Disposal Volumes

Recycling Efforts in the Appalachian Basin

- In 2017, approximately 94% of all produced fluids from the Marcellus were recycled and/or reused in Pennsylvania.
- In Ohio, there is recycling and reuse taking place in the Utica, but it is not being tracked as to how much volume is being reused and recycled.
- In West Virginia, Antero Midstream's Clearwater Facility is now fully operational and supposedly recycles about 48,000 barrels per day of Marcellus water.

Antero's Clearwater Facility

- Built to handle up to 60,000 barrels of water per day.
- \$300 million dollar project in partnership with Veolia Water Technologies.
- Located in Doddridge County, West Virginia and has onsite landfill for the salt that is produced.

Source: ohvec.org

Challenges Facing Class II Operators

- Properly sited location;
- Title searches and mineral rights issues;
- Regulatory challenges;
- Adequate geologic conditions for high capacity disposal;
- Proper well construction and completion;
- Addressing public and local opposition;

- Right option for surface facility;
- Proper pre-treatment program;
- Solid waste disposal NORM/TENORM; and
- Seismic monitoring and mitigation.

Well Siting Criteria

- Assessment of the area of review;
- Favorable geologic conditions;
- Away from populated areas;
- Good road network and access; and
- Proximity to shale play development.

Source: Google Earth, 2018

Title Searches and Mineral Rights

- A title search is critical to establishing if the property has been leased and if the rights to inject are with the lessee.
- Rights to inject may remain with the surface owner.

EXHIBIT -V.

ADDENDUM TO OIL AND GAS LEASE (the "Addendum")

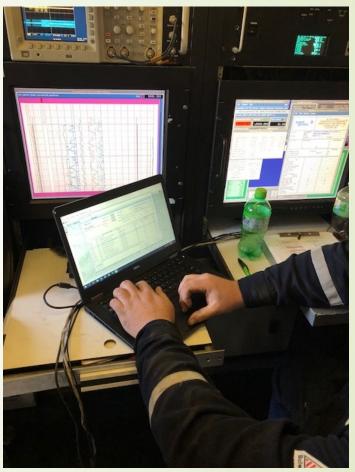
Attached to and made a part of that certain
Oil and Gas Lease, by and between
Mary A. Haras, an individual as "Leaser," and
Antero Resources Appalachian Corporation, as "Leaseo," dated August 4th, 2012 (the "Lease")

DEFINED TERMS: Any cepitalized terms in this Addendum, which are not defined in this Addendum, shall have the mauning given to such terms in the Lease.

CONFLICT BETWEEN TERMS: In the event of a conflict or inconsistency between any of the terms and conditions contained in this Addendum and the other terms and conditions contained in the Lease, the terms and provisions contained in this Addendum shall be controlling.

NO STORAGE RIGHTS: Notwithstanding snything herein contained to the contrary, Lessee agrees the herein described Lessehold shall not be used for the purpose of gas storage as defined by the Faderal Energy Regulatory Commission. Any reference to Lessee's rights to store gas within the Lessehold that are contained in this Lesse is hereby deleted. If Lessee wishes to coter into an agreement regarding gas storage using the Lessehold with a third party, Lessoe wishes to coter into an agreement regarding gas storage using the Lessehold with a third party, Lessoe white the care of the identity of the third party, the price or the consideration for which the third party is prepared to offer, the effective date and closing date of the transaction and any other information respecting the transaction which Lessee believes would be material to the exercise of the offering. Lessor does hereby great Lessee the first option and right to purchase the gas storage rights by matching end tendering to the Lesser any third party's offering within 30 days of receipt of notice from Lesser.

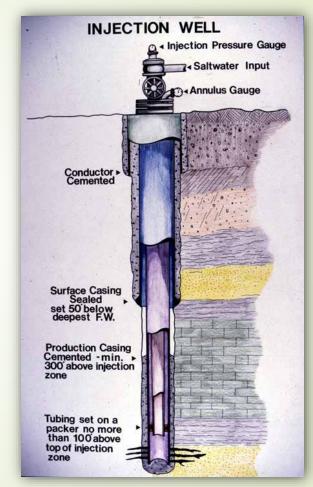
NO DISPOSAL OR INJECTION WELLS: Lessee is not granted any right whatsoever to use the Lessehold, or any portion thereof, for construction and/or operation of any disposal well, injection well, or the construction and/or operation of any other disposal facilities.


Regulatory Challenges

- Continuing changes to the regulatory environment can present new challenges to the Class II disposal well operator.
- Seismic monitoring and mitigation is now required on all new Class II disposal wells in Pennsylvania and for deep injection wells in Ohio with the potential for monitoring on other Class II disposal wells based on regulatory discretion.
- West Virginia requires detailed seismic activity assessment and fault delineation and evaluation on new and renewal Class II disposal well applications.

Geologic Evaluation and Assessment

- Proper geological
 evaluation is critical to
 a successful large
 capacity disposal well
 in the Appalachian
 Basin.
- Knowledge of geologic formations and regional variations is important in selecting appropriate disposal intervals.



Well Construction and

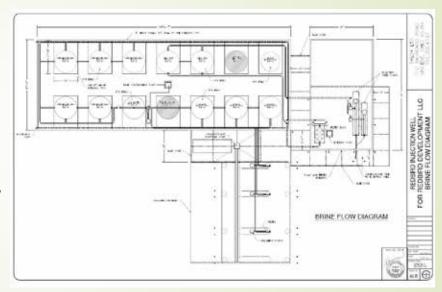
Completion

Understanding proper well construction design, geophysical log interpretation, cementing, and completion practices in the Appalachian Basin are essential to a successful SWD well.

Completion methodology - Open hole versus cased hole assessment

Source: DOGRM, 2013

Addressing Public and Local Opposition


- Opposition to Class II disposal wells has increased dramatically in the Appalachian Basin.
- There have been objections to SWD applications and protests and demonstrations at operational sites, along with environmental appeals and litigation.
- The applicant needs to be prepared to face these challenges.

Source: Commondreams.org

Surface Facility Operations

- Surface facility design can vary within the Appalachian Basin, but typically includes:
 - Unloading bays or pad;
 - Appropriate tank storage with secondary containment;
 - Injection pump(s) with filter pods; and usually some type of chemical pre-treatment.

Source: ALL Consulting, 2016

Types of Surface Facilities

Source: ALL Consulting, 2017

Source: ALL Consulting, 2016

Pre-Treatment Program

- It is extremely important to properly filter and chemically treat the injectate prior to injection.
- Chemical treatment needs to address not only the type of fluid to be injected, but also the sensitivity of the injection formations.
- Failure to properly treat or filter injectate can lead to skin effect and formation damage.

- Poorly filtered or treated injectate leads to solids filling up wellbore, plugged tubing, and expensive well workovers.
- It is far cheaper to address on the surface then in the subsurface.

Examples of Poorly Treated Injectate

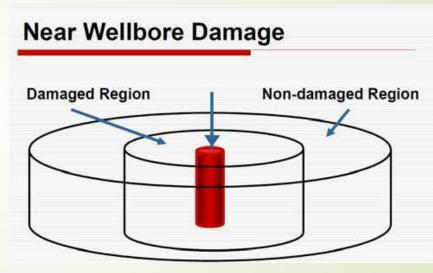
Source: ALL Consulting, 2016

Source: ChemTreat, 2019

Better Solids Removal

Use of an inline weir tank, gun barrel, DAF system, hydrocyclone, or desilter/desander provides for better separation and removal "on the fly" of solid (silt) particles.

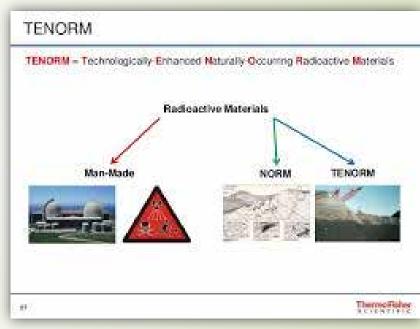
Dramatically reduces the reliance on conventional filter sticks and sock filters.


Use of these advanced technologies can lead to savings in labor and disposal costs of filtering media.

Source: DR Environmental, 2019

Formation Damage

- Any unintended impedance to the flow of fluids into or out of a wellbore (reduction in permeability) is commonly referred to as formation damage.
- •Formation damage is usually caused by physico-chemical, chemical, biological, hydrodynamic, and thermal interactions of the porous geologic formation with particles, fluids, and mechanical deformation of the reservoir.
- Well injectivity is reduced by deposition and flow modification at and around the wellbore.



Source: Civan, 2006

TENORM Disposal Issues in the Appalachian Basin

- TENORM in Ohio and West
 Virginia is regulated by the
 State's Health Departments and
 under Chapter 78a by the PA
 DEP.
 - Oil and gas regulations also address requirements for testing or manifesting of TENORM solid wastes.
- Radium-226 and Radium-228 are the predominant TENORM issues with oil and gas.
- At Ohio Class II SWD facilities, solids required to be tested for TENORM will be tank bottoms, pipe scale, and filter media.
- These solids can also be manifested for shipment out of state without conducting testing.

Source: Slideshare.net, 2015

Seismic Monitoring and Mitigation

Development of a monitoring and mitigation plan is becoming a critical consideration for Class II disposal operations.

This is a proactive approach that can effectively manage and mitigate injection-induced seismicity.

PA DEP and Ohio have developed seismic monitoring and mitigation requirements.

Source: ALL Consulting, 2018

GINFERING - ENVIRONMENTAL

The Plan

A plan, which includes both monitoring and mitigation elements, should be built upon hazard identification, risk assessment, and data evaluation that provides for a technology-based process for accessing and addressing actual and perceived risks.

SENECA RESOURCES CLASS II INJECTION WELL SEISMIC MONITORING AND MITIGATION PLAN

Prepared by ALL Consulting, LLC

1718 S. Cheyenne Ave. Tulsa, OK 74120

Hazard Identification and Risk Assessment

Involves evaluation and determination of:

- Site specific subsurface geology and geophysical data;
- Identification of pre-existing, favorably-oriented faults in the vicinity of injection operations;
- Hydrologic conditions;
- Existing seismic networks and their effectiveness;
- Injection reservoir analysis;
- Injection history; and
- Assessment of historical seismicity in the area.

Additional risk considerations:

- Assessment of population density;
- Structures:
- Infrastructure; and
- Human health, safety, and the environment.

Summary

- Proper consideration of these challenges can lead to success in SWD environment in the Appalachian Basin.
- ALL is actively engaged in assisting oil and gas clients in this area and understands how to maneuver in the disposal well landscape and how to address these challenges.

Source: ALL Consulting, 2018

Questions

Thomas E. Tomastik, CPG, Senior Geologist and Regulatory Specialist, ALL Consulting 10811 Keller Pines Court Galena, OH 43021 ttomastik@all-llc.com www.all-llc.com

Source: ALL Consulting, 2018

<u>Citation Information</u>: Thomas E. Tomastik, CPG and J. Daniel Arthur, P.E., SPEC., "Challenges Facing Class II Disposal Well Operations in the Appalachian Basin". Presented at the 2019 Ground Water Protection Council UIC Conference. Fort Worth, Texas, February 24-27, 2019.

