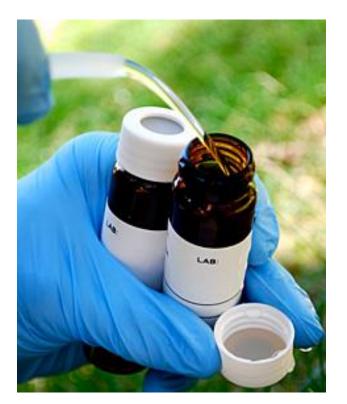

Geochemical Modeling for Class I UIC CCR Leachate Case Study

OVERVIEW

- Managing Complex Liquids with Class I UIC
- Proactive Avoidance of Plugging Formations
- Simulating Downhole Precipitate
- CCR Leachate Case Study

Typical Treatment Analysis



- Very Scientific Bench Scale Test
- Equally as Scientific Materials Analysis
- Calculate Dosing Rates

Typical Treatment Analysis

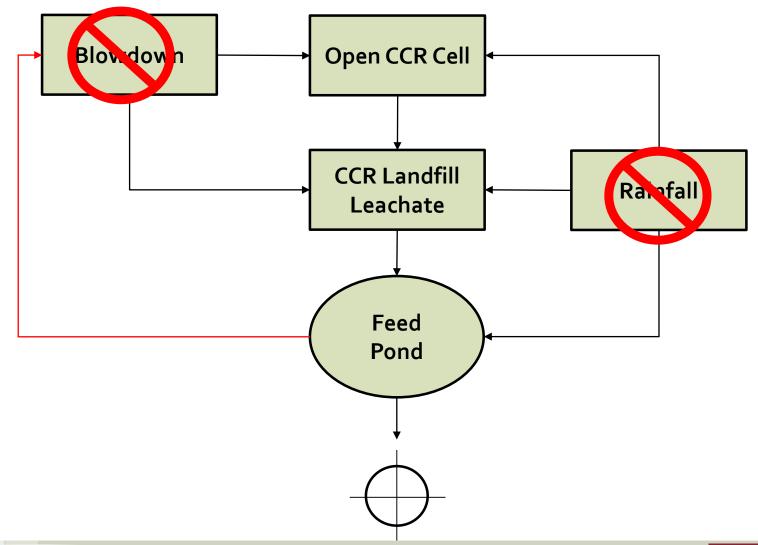
- Implement Treatment
- Verify Treatment

CASE STUDY CCR LEACHATE AT ELECTRIC UTILITY

CASE STUDY FACILITY

Electric Utility Compound

- Mine Mouth Coal-Fired Power Plant
- Coal Combustion Residuals Landfill
- Zero Discharge Facility
- Recirculates >50M gal
- Class I UIC for Leachate Management


OUR CHALLENGE

Surface Variables

- Liquids Handling Inconsistent
- Fluctuating pH in Feed Pond
- Surface Piping Always Plugged

OUR CHALLENGE

Ion/Parameter	(mg/L)	Leachate Sumps Max. (mg/L)	Leachate Sumps Min. (mg/L)	Feed Pond Max. (mg/L)	Feed Pond Min. (mg/L)
TDS	15,962.00	29,500.00	12,600.00	23,100.00	
pН	4.50	9.14	5.56	6.10	2.89
Са	2,645.00	5,360.00	1,450.00	4,320.00	
Mg	134.50	1,480.00	8.58	330.00	
Ba	0.20	0.34	0.07	0.29	
Sr	14.40		5	14.10	
Na	2,448.00	2,360.00	1,170.00	1,910.00	
К	627.60	1,210.00	324.00	859.00	
Li	3.03			2.09	
Fe	4.58	790.00	1.55	183.00	16
Ammonia	0.00	49.40	1.12		
AI	0.17	22.50	0.10	0.08	
Mn	1.72	11.50	0.02	3.17	
Zn	0.08	1.30	0.05		
Cl	8,500.00	14,700.00	4,800.00	11,200.00	939
S	1,325.00	2,600.00	968.00	1,160.00	
Br	0.00				
Total carbonate	94.40	342.00	38.00	0.00	0.00
SiO2	0.00				
Р	0.00	2.50	0.27	0.73	
F	0.00	9.32	0.45		
N (NO3-)	0.00	0.96			
В	37.46	158.00	14.50	77.60	
H2CO3	70.00		S		
HCO3-	24.40	158.00	6.00		
CO3-2	0.00	184.00	32.00		

OUR CHALLENGE

Middle Ordovician Sandstone Injection Reservoir

- Rounded, Well Sorted, Poorly Cemented
- Porosity ~ 13%
- Pore Throat Diameter: $90\% > 10 \mu$

"If we can't keep the surface piping from plugging, how can we expect the downhole formation to stay open?"

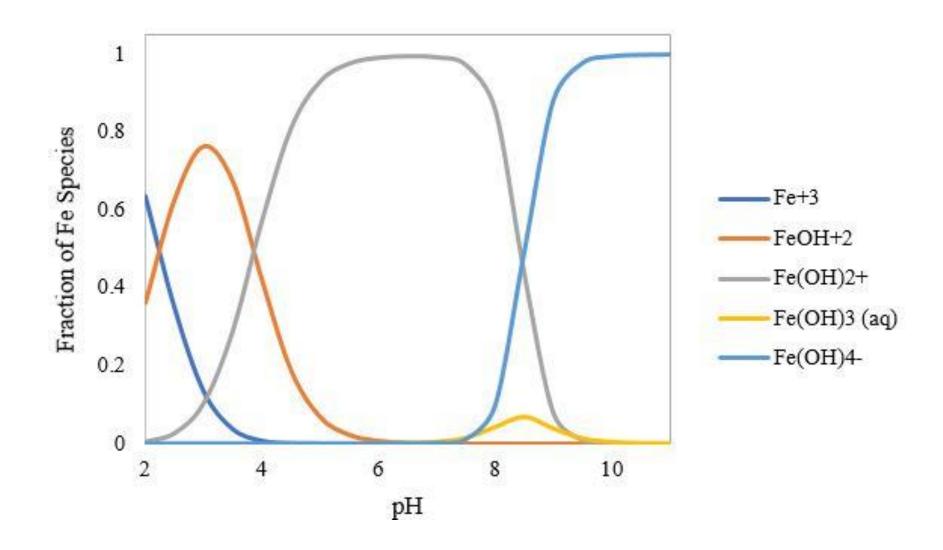
THE APPROACH

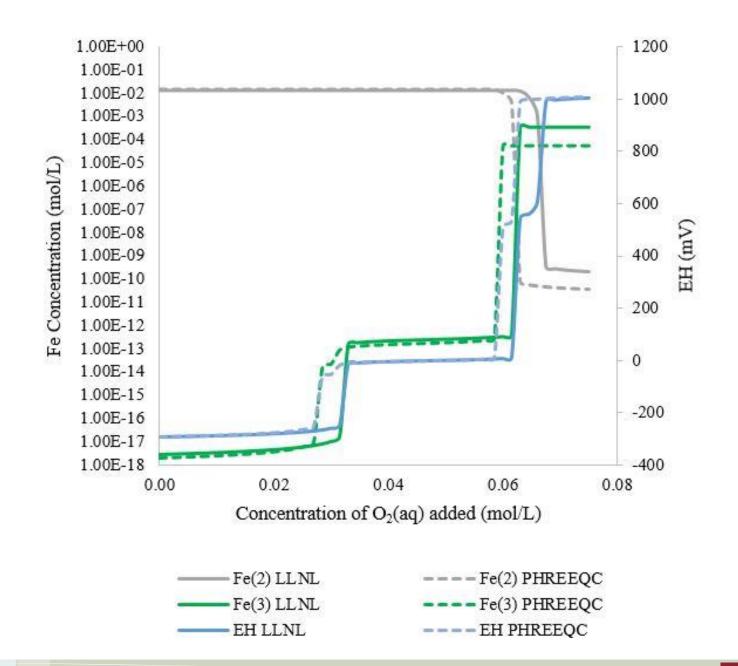
• Simulate Downhole Reactions

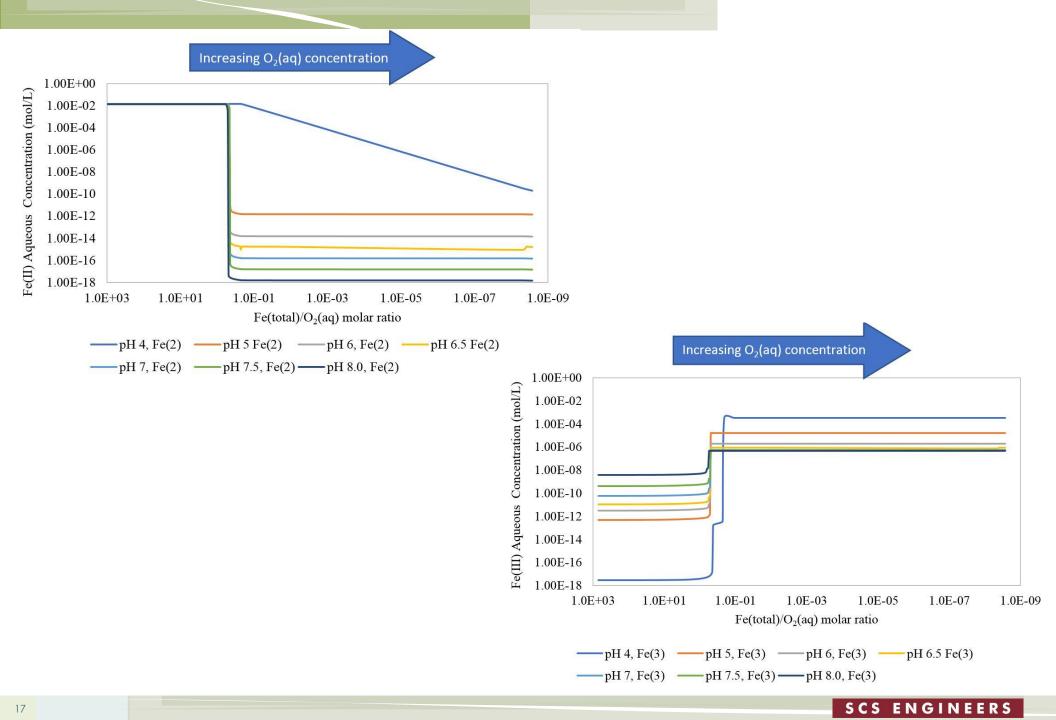
• Identify Potential Formation of Precipitates

• Collect/Analyze Fluids & Materials

- Interview Operators & Samplers
- Understand Processes & Variations




Rainfall + Drainage Layer = P_{sump} and $P_{recipitate}$

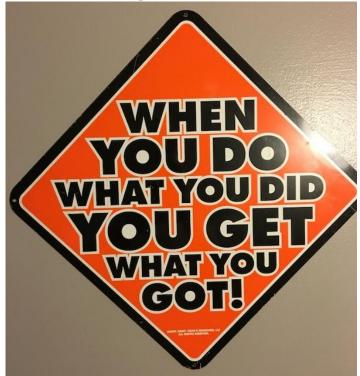

Geochemical Simulation of Oxidation Between
Sump and Feed Pond

 $4Fe^{2+} + O_2(aq) + 6H_2O \Leftrightarrow 4Fe(OH)_2^+ + 4H^+$ $\Im pH_{pond}$

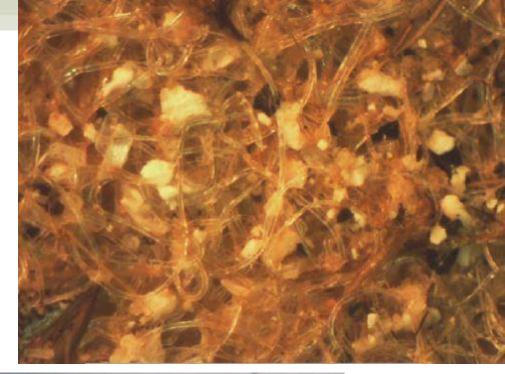
- Simulate Interface: Downhole Liquids + Leachate
- 100% Leachate Simulation
- 100% Downhole Liquids Simulation
 - •Temp む to 50 °C
 - Pressure ① to 2500 psi
- 50%/50% Simulation
 - Pressure: Little Solubility Influence
 - Temp: Significant Alkali Earth Minerals Influence
 - pH: Significant Alkali Earth Carbonate Minerals Influence
- Back Analysis for Mass Removal

OUR SOLUTION

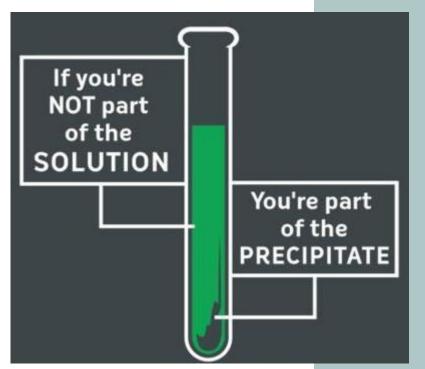
- Custom Liquids Management Plan
- Combination Physical/Chemical Treatment


THE SOLUTION

- Define Constraints/Bracket Parameters
- Programmable Logic Controller


OUR SOLUTION

- Continue Leachate Analysis
- Continue Simulation Revisions
- Watch for Changes to Liquids Handling



SUMMARY

Thank you

Stephanie Hill shill@scsengineers.com 618-772-3403