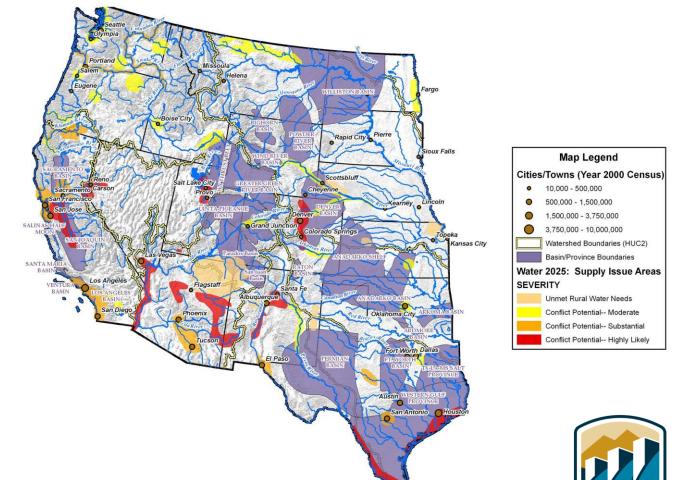


Produced Water Research at Reclamation

Katie Guerra, Nathan Kuhnert, Zachary Stoll, John Irizarry Nazario, Yuliana Porras-Mendoza

Produced Water Mission Relevance

"The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public."

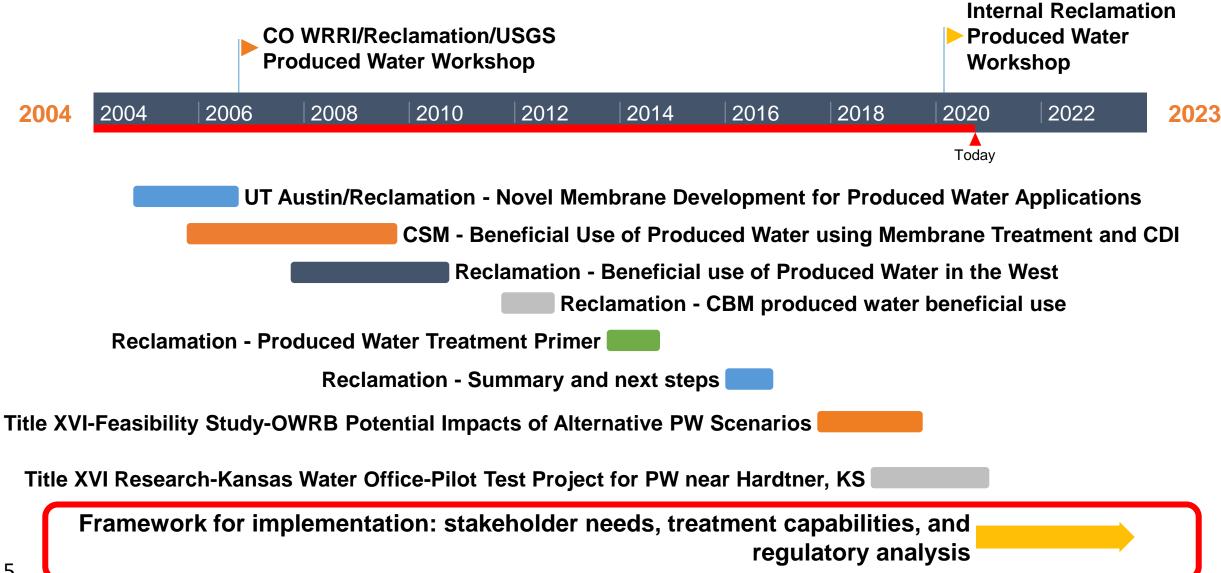


Augmenting Traditional Water Supplies

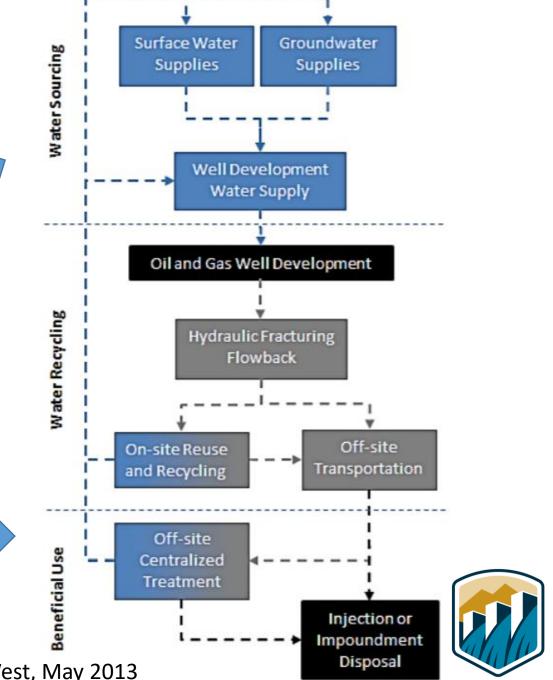
Beneficial use of produced water can...

- Reduce potential for conflict in water-short areas
- Improve environmental management of land and water supplies
- Enable oil and gas production where otherwise impractical due to water disposal challenges

https://www.usbr.gov/research/dwpr/reportpdfs/report157.pdf


Treated Produced Water as an Alternative Water Supply

- Drought proof
- Can free up potable water for other uses
- Water can continue to be mined after oil and gas production ceases, if necessary
- Treatment and use mitigates other environmental risks associated with disposal


Timeline of Reclamation PW Activities

Water Management Perspective

Efficient water management

- Quantify locational value of water source
- Identify alternative sources for competing interests

Increase usable water resources

- Identify impaired resources
- Employ treatment for impaired water
- ⁶ Dahm, K., Guerra, K. EUCI: Produced Water Management in the West, May 2013

Mutual Benefits to Water and O&G

Common Challenges

Reduce the cost of water treatment

Minimize energy consumption

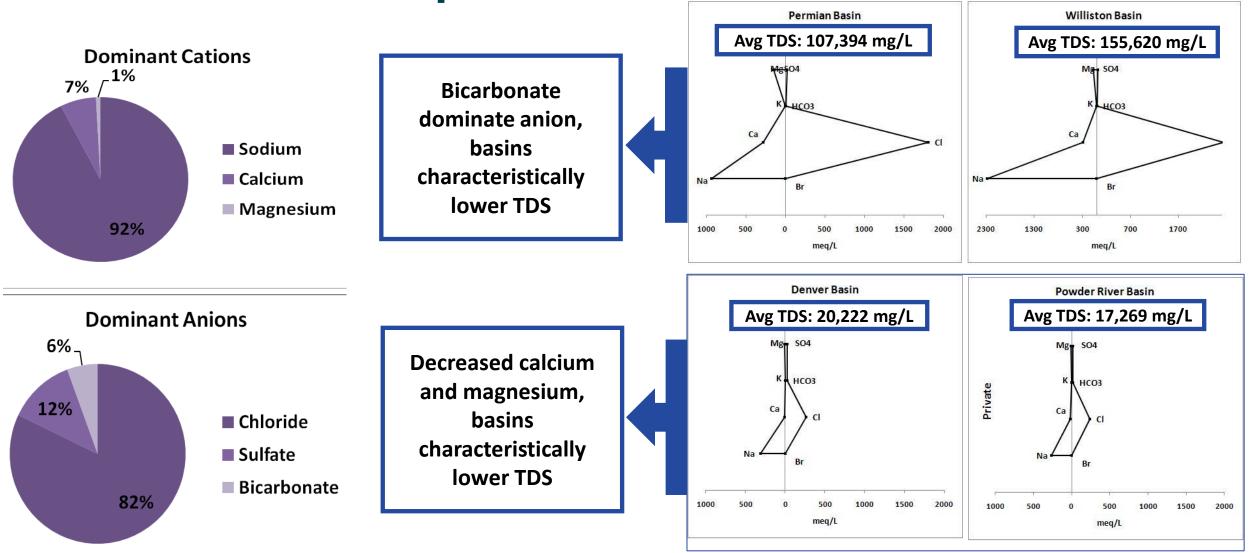
Reduce chemical consumption

Remove of trace metals

Water Industry

Minimize concentrate/residuals

Decrease system maintenance


Variable water quality and quantity

Flexible, mobile, modular systems

Petroleum Industry

Water treatment– flow of expertise, knowledge and innovation between industries

Understand WQ Characteristics to Optimize Treatment for Specific Beneficial Uses

Compare Treatment Technologies Based on Key Design and Performance Criteria

Technology	Overall Process Recovery (%)	Contaminants removed	Organic matter removal	Particulate removal (min size removed)	Heavy Metals	Low Chemical Demand	Low Energy Demand	Minimal Maintenance	Ease of Operation	Minimal posttreatment requirement	Low Cost	Robustness ¹	Reliability ²	Flexibility ³	Mobility ⁴	Modularity ⁵	Waste Disposal Requreiments	Small Footprint
Settling pond	100%	particulates, iron, manganese	NA	+++	++	+++	+++	+++	+++	+++	+++	+++	+++	++	-	-	+++	-
Air Stripping	100%	TOC, volatile organics	+++	NA	-	+++	++	++	++	+++	++	+++	+++	+	++	+	+++	++
Surfactant Modified Zeolite Vapor Phase Bioreactor	95%	TOC, volatile organics	+++		++	++	+++	+++	+++	+++	?	?	?	?	?	+++	++	++
Constructed wetlands	100%	TOC, dissolved organic compounds (increased calcium and slighly increased TDS)	+++	+++	++	+++	+++	+++	+++	+++	+++	+++	+++	++	-	-	+++	-
Granular Activated Carbon Fluidized Bed Reactor	100%	TOC, volatile organics	+++	++	+++	+++	+++	++	+++	+++	+	+++	+++	+++	+++	+++	+	+++
UV Disinfection	100%	inactivation of microbial contaminants	NA	NA	NA	+++	+	+	+++	+++	+	+	+++	+++	+++	+++	+++	+++
Ceramic MF/UF membrane	85 to 95%	particulates, dissolved (with coagulation) and suspended organics, biological	++	0.01 um	-	++	++	++	++	+++	++	+++	++	++	+++	+++	++	++
Excellent	Good	Fair	Рос	or			1			raoulra			/ -				+ - (4 22

https://www.usbr.gov/research/projects/download_product.cfm?id=324

This led to work by CSM through NETL on the CBM Produced Water Management Tool: <u>http://aqwatec.mines.edu/produced_water/tools/</u>

+++

++

Case Studies of Existing Hydraulic Fracturing Flowback and Produced Water Treatment Facilities

- Facility Description
- Location
- Feed Water
- Capacity
- Treatment Process
- Treated Water Use
- Concentrate Disposal
- Operational experience
- Performance data
- Permits

10

https://www.usbr.gov/research/projects/download_pr oduct.cfm?id=1214

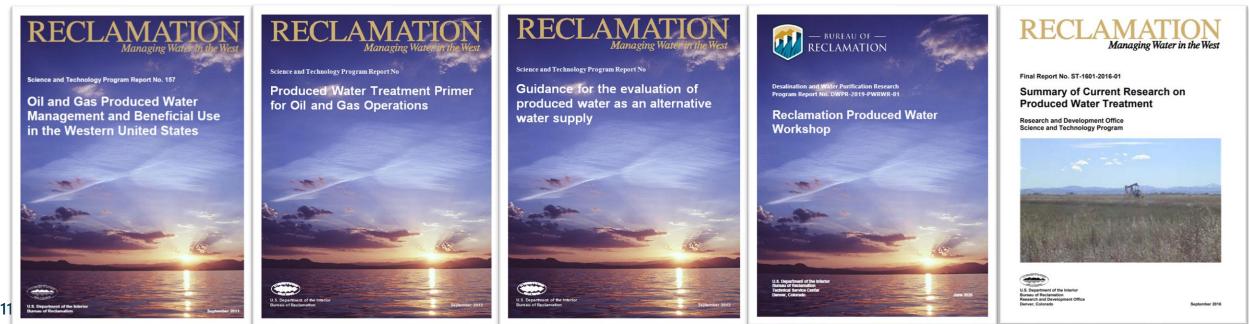
McKean County, PA

Clarion County, PA

Pinedale, WY

San Ardo, CA

Wellington, CO

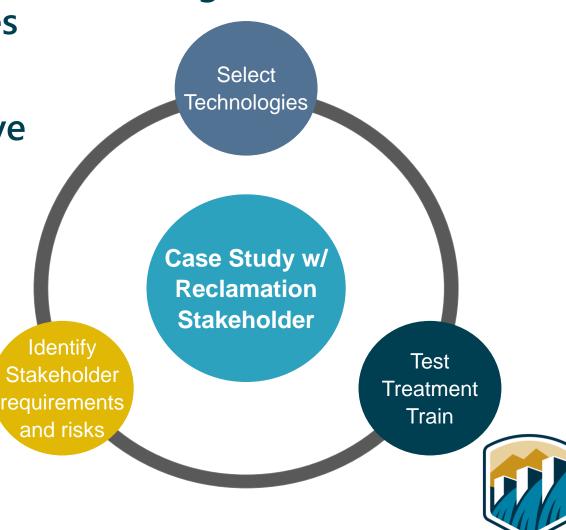


Conclusions From Past Work

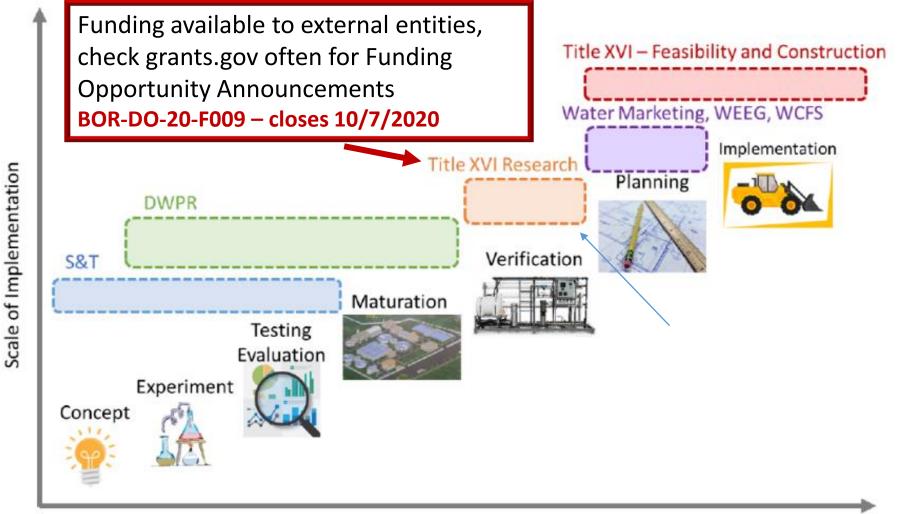
Beneficial use: In areas with competing water resource needs, treatment and beneficial use of produced water will benefit water users and energy producers

Treatment: Technologies exist to treat PW, but selecting the appropriate technology for an application remains a challenge

Partnerships: Collaboration between producers/service providers, government (Fed/State/Local), and stakeholders is essential for treatment and beneficial use of produced water


Next Steps

Evaluation of Produced Water Treatment Technologies and Applications to Increase Water Supplies


Leverage the following:

- 1. New ideas and fresh perspective
- 2. Treatment expertise
- 3. Testing facilities
- 4. Stakeholder needs
- 5. Partnerships

Upcoming: Reclamation Research Roadmap – public comment in 2021

Reclamation Programs Fund Advanced Water Treatment from Concept to Construction

Technology Maturity/Development

Katie Guerra Nathan Kuhnert Zachary Stoll John Irizarry Nazario Yuliana Porras-Mendoza

Research reports can be found at: www.usbr.gov/research/dwpr

— BUREAU OF — RECLAMATION