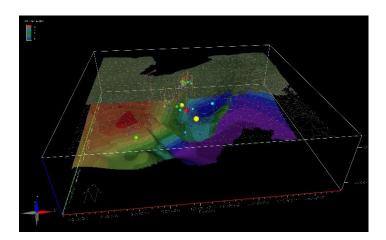
Case Study on Methods to Leverage Operational Data from Class II UIC Wells to Evaluate Class VI CO₂ Injection Well Performance

Joel Sminchak, Manoj Valluri, Neeraj Gupta and Glenn Larsen Battelle, Columbus, Ohio, USA



Ground Water Protection Council Annual Forum September 28-30, 2020

Presentation Outline

- 1. Background
- 2. Geotechnical parameters for injection zones
- 3. Class II UIC operational data & injection performance
- 4. Class VI CO₂ injection evaluation
- 5. Conclusions

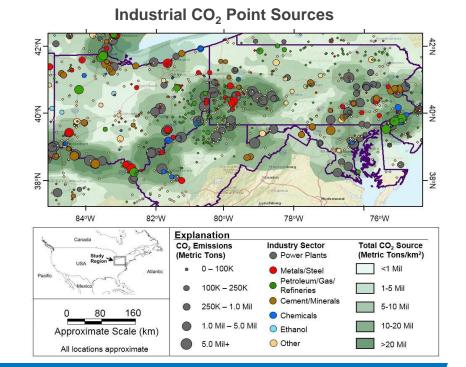
Acknowledgments

- This material is based upon Central Appalachian Basin CarbonSAFE work supported by the U.S. Department of Energy (DOE) under Award DE-FE0029466 with co-funding by The Ohio Coal Development Office in the Ohio Development Services Agency (Grant D-17-02).
- Many thanks to team members: American Electric Power (AEP), Buckeye Brine, The Energy Cooperative, Three Rivers Energy, BHGE, LLNL, LANL, PNNL, PKM Energy, Vorys, Sater, Seymour, and Pease LLP (Vorys), and Wade LLC.
- Additional support provided by the U.S. DOE Midwest Regional Carbon Initiative (DE-FE0031836).

Background

Class II UIC vs. Class VI UIC Carbon Storage

Example: Central Appalachian Basin


Class II Brine Disposal

- ~200 Class II UIC wells
- ~20 million BBL brine/year

New York Michigan Pennsylvan Legend conventional Oil/Gas We Well Location Irine Disposal Wells 008-2012 Sum of Volume 1000000 - 150 500000 - 1000000 100000 - 500000 Report Volume is Zero or Kentucky conventional Well Densit s/square km) 02.05 0.5 - 1.0

Class VI CO₂

- ~200 large CO_2 point sources
- ~200 million metric tons CO₂/year

BATTELLE

Class II Brine Disposal Wells

Background Class II UIC vs. Class VI Carbon Storage

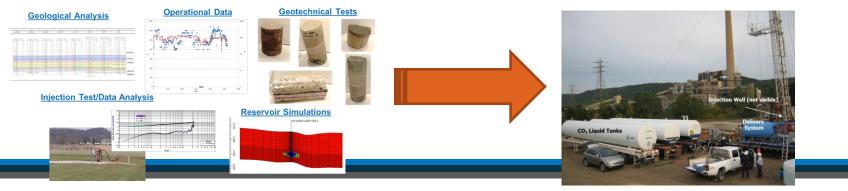
Example: Central Appalachian Basin

Class II Brine Disposal

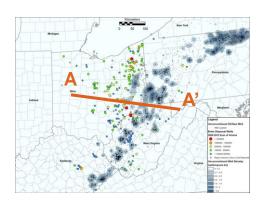
- Best injection wells have total annual injection approx.
 - ~1,000,000-2,000,000 BBL/year
- Commercial well max. injection rates ~10,000-15,000 BBL/day
- Limited area of review (1/2-mile radius), wellhead monitoring, subsurface rights.

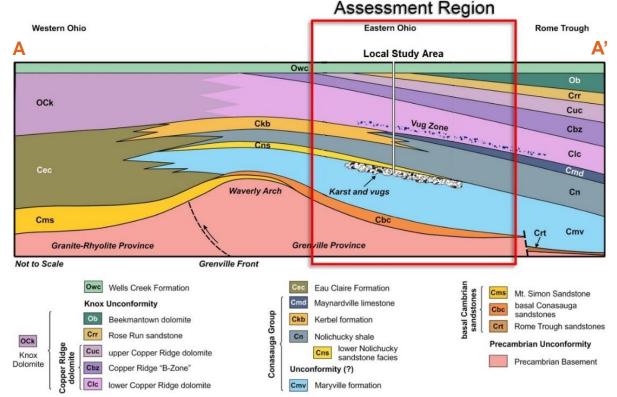
Class VI CO₂

- Industrial source may inject 1-2 million metric tons CO₂/year (or 9-18 million BBL/year)
- Maintain injection rate of 2,800-5,600 metric tons CO₂/day
- Large area of review, monitoring, subsurface rights requirements.



Background


Objectives-


- Determine maximum, sustainable CO₂ injection rates for CO₂ storage intervals given maximum allowable surface injection pressure constraints.
- Estimate number of wells, well spacing necessary to support industrial scale CO₂ storage 1.6 million metric tons CO₂/year (~50 million metric tons CO₂ over 30 years).
- Use Class II UIC well operational data, flow meter tests, & pressure falloff tests to validate reservoir simulations.

Geotechnical parameters for Injection Zones

- Stacked reservoir (carbonates and sandstones)
- 6,000-8,000 deep; 200,000-300,000 mg/L salinity
- Extensive caprock

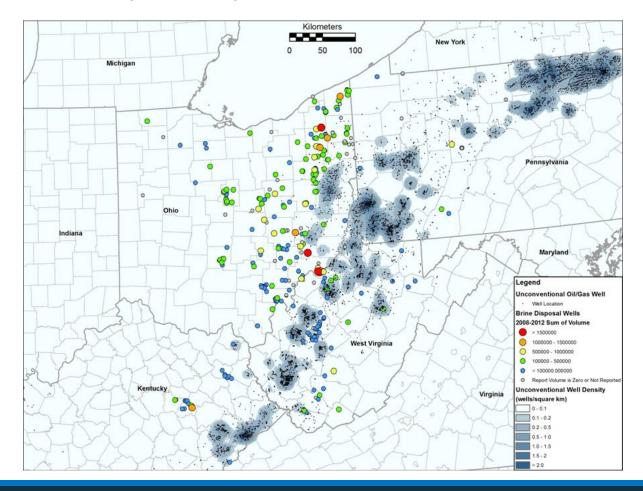
Geotechnical parameters for injection zones

- Vugular, karst porosity zones appear to have the best injection potential.
- Porosity zones are difficult to detect with geophysical logs, seismic.

Static Earth Model of Porosity

Geotechnical parameters for injection zones

 Injection interval and caprock properties estimated based on regional maps, nearby wells, core tests, geophysical logs.


		Stratigraphic Column			Formation Data			
c	System	Formation Lithologies	Stratigraphy (Colored by Unit Type)	Depth (ft)	Elevation (ft MSL)	Thickness (ft)	Average Porosity (decimal)	
		LS, DOL	Black River Group	5,395	-4,620	446	0.006	
Caprock -	Ordovician	LS		5,841	-5,066	109	0.001	
L		DOL, LS, SH	Wells Creek Formation	5,950	-5,175	50	0.019	
		SS	Rose Run sandstone	6,000	-5,225	78	0.05	
r		DOL	Upper Copper Ridge dolomite	6,078	-5,303	195	0.055	
		DOL, SLT	Copper Ridge B-zone	6,273	-5,498	67	0.061	
	Cambrian	DOL	Lower Copper Ridge dolomite	6,340	-5,565	120	0.037	
			Lower Copper Ridge Flow Zone	6,460	-5,685	43	0.115	
			Lower Copper Ridge dolomite	6,503	-5,728	79	0.037	
		SS, DOL, SH	Kerbel sandstone	6,582	-5,807	26	0.037	
Reservoir -		DOL, SH	Nolichucky shale	6,608	-5,833	18	0.023	
		SS, DOL SS	Nolichucky Flow Zone	6,626	-5,851	42	0.15	
		DOL	Maryville formation	6,668	-5,893	82	0.024	
			Maryville Flow Zone	6,750	-5,975	35	0.10	
			Maryville formation	6,785	-6,010	400	0.024	
L		SS	basal Cambrian sandstone	7,185	-6,410	102	0.066	
	Precambrian	Igneous and metamorphic rocks	Grenville Complex	7,287	-6,512	-	-	

Injection zone properties of Selected Area B.

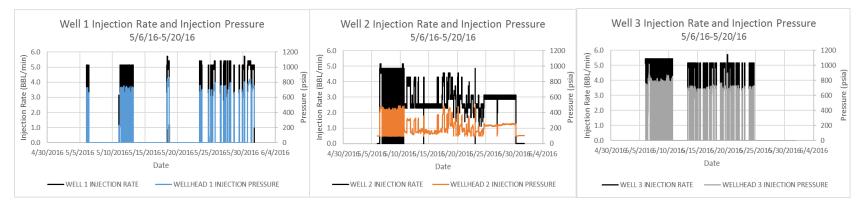
Note, bold indicates major intection zones, LS = intestone, DOL = dolornite, $S\Pi = shale$, SLT = sitistone.

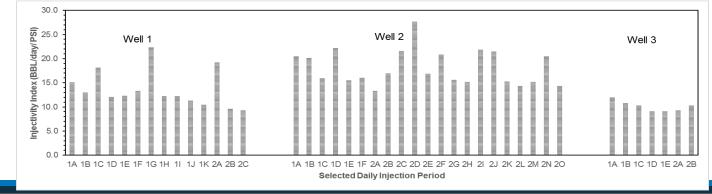
• Class II injection well testing and operational data provide assurance on injection performance.

• Class II wells provide empirical data on injection potential.

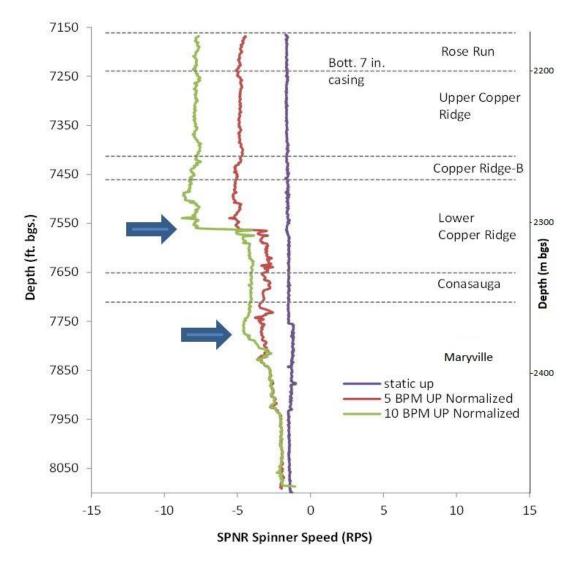
County	Operator	Lease Name	Brine Vol. (bbl/yr)	CO ₂ (tons/yr)*
Tuscarawas-Oxford	Elkhead Gas&Oil Co.	Mozena #1	2,151,488	325,580
Coschocton-Keene	Buckeye Brine LLC	Adams #3	1,940,139	293,460
Muskingum-Union	Heckman Waters Res	Goff SWD #1	1,403,135	212,430
Coshocton-Kenee	Buckeye Brine LLC	Adams #2	1,332,557	201,845
Athens-Troy	K&H Partners LLC	K&H Partners #2	1,327,271	201,115

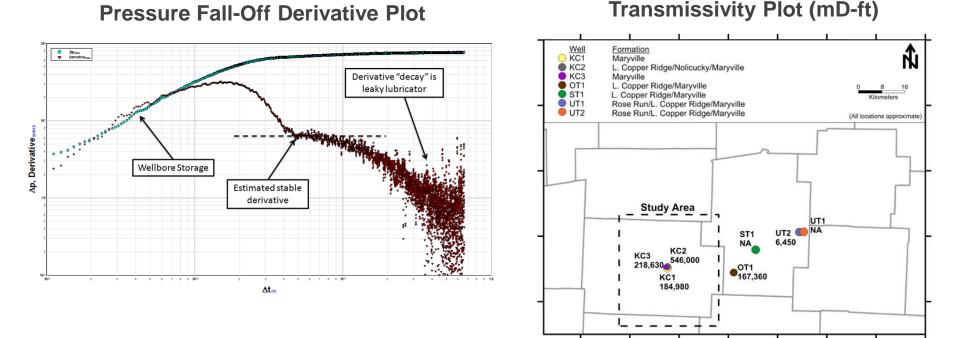
2015


2016

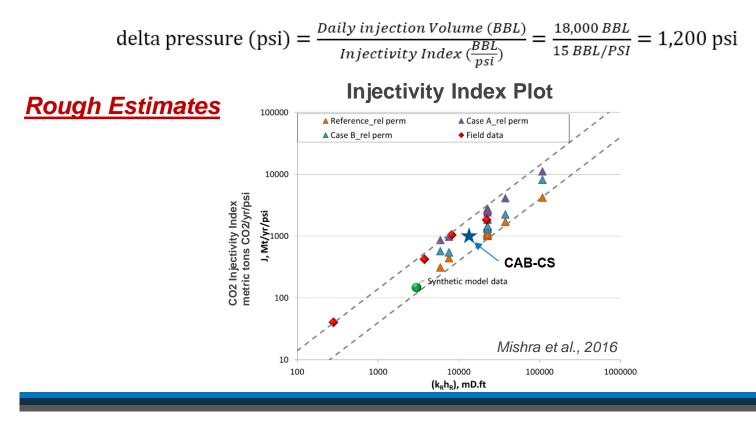

County	Operator	Lease Name	Brine Vol. (bbl/yr)	CO ₂ (tons/yr)*
Washington	Redbird Development	Red Brid (SWIW #18)	1,937,197	293,095
Muskingum	Environmental Energy Solutions	Pattison Trust (SWIW #30)	1,697,250	256,960
Tuscarawas	Elkhead Gas&Oil	Mozena (SWIW #13)	1,498,932	227,030
Guernsey	Clearwater Three LLC	Clearwater 111 (SWIW #15)	1,486,103	224,840
Guernsey	Clearwater Three LLC	BO (SWIW #20)	1,372,107	207,685

*Potential injection rate assuming brine density: 62.48 lb/ft³, supercritical CO₂ density: 30 lb/ft³, 8.6 bbl of fluid per ton

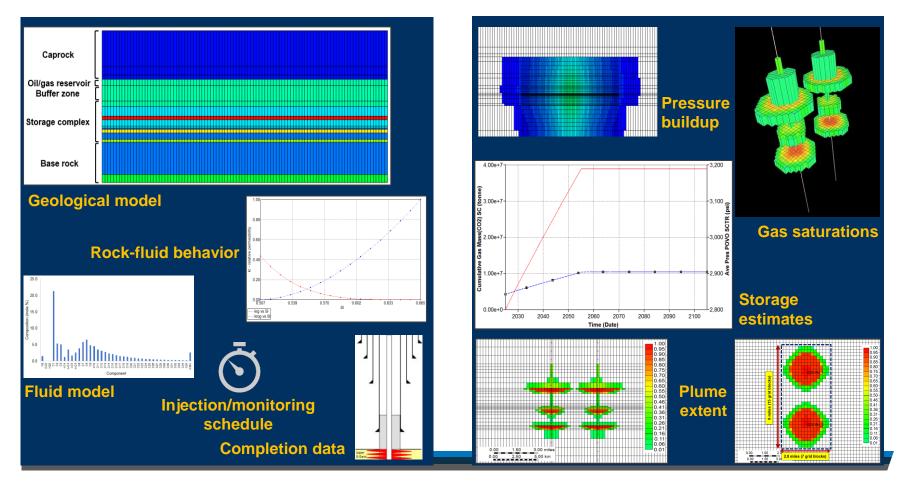

- <u>High performing Appalachian Basin commercial Class II</u> wells sustain injection rates of 5,000 to 9,000 BBL/day at wellhead pressures of 300 to 900 psi.
- Injectivity indexes (rate/delta P) = 10 to 20 barrels per day/psi.



- Flow zones are difficult to identify with geophysical logs.
- Flowmeter injection tests help define injection flow zones in carbonate layers in open hole injection intervals.



- Well tests on Class II injection wells provides additional information on transmissivity of injection zones
- Also reservoir features (open, closed, faults).

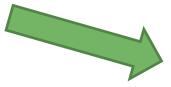


- Class II injectivity index or well test transmissivity may be used to evaluate Class VI CO₂ well performance.
- Example- ~800,000 metric tons CO₂/year (or 18,000 BBL/day) and injectivity index 'J' = 15 BBL/psi.

 Advanced reservoir simulations completed to estimate "area of review" based on CO₂ pressure/saturation & geotechnical parameters for the study area.

• Reservoir simulation input based on geologic models & well tests.

Darameter	Value				
Parameter	Site B (primary)	Site A (secondary)			
Geological Model					
Reservoir depth (top layer)	5395 ft	7187 ft			
Pressure (top layer)	2536 psi	3127 psi			
Temperature (top layer)	109 °F	127°F			
Caprock thickness	605 ft	639 ft			
Storage zone thickness	707 ft	651 ft			
Injection Data					
Injection wells needed	2	2			
CO2 injected	50 million metric tons	50 million metric tons			
Injection duration	30 years	30 years			
Monitoring duration	50 years	50 years			
Plume radius	1.2 miles	1.2 miles			
Pattern area	16.8 sq. miles	16.8 sq. miles			
Pressure Data					
Final average reservoir pressure buildup	80 psi	75 psi			
Maximum allowable bottom-hole pressure	3952 psi	5062 psi			
Maximum well bottom-hole pressure	3741 psi	4515 psi			
Maximum pressure buildup near wellbore	270 psi (at t = 30y)	260 psi (at t = 30y)			
Maximum pressure buildup at model boundary	85 psi	90 psi			
Pressure buildup in oil and gas zone	85 psi	NA			
Pressure buildup in buffer zone	85 psi	0			



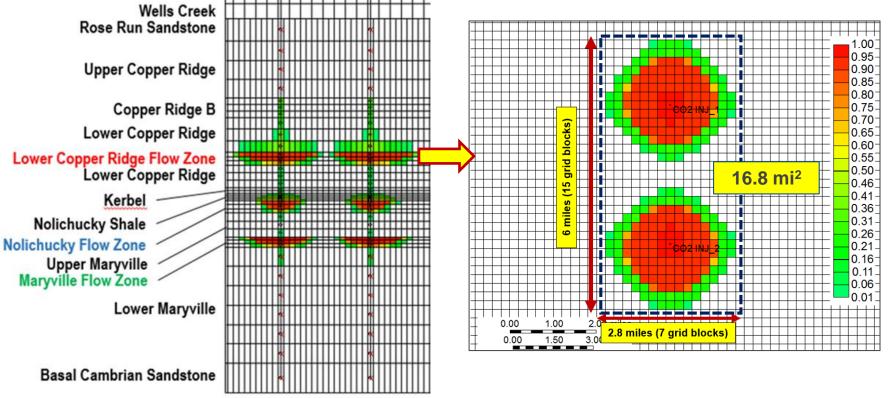
- Initially, the model's permeability distribution was based on neutron & density logs as interpreted in the geologic model & results of injection pressure falloff/flowmeter test data from wells.
- This initial model iteration had anomalously high transmissivities when compared to operational data. Simulation results were also overly optimistic in terms of injection rates and pressures.
- Consequently, injection zone transmissivity was adjusted using "transmissivity multipliers" based on long-term injection performance.

 $Transmissivity Multiplier = \frac{(kh)_{flow-test}}{(kh)_{operational}}$

Transmissivity multipliers for permeability analysis.

Well	Well Test Transmissivity (<u>mD</u> -ft)	Operational Transmissivity* (<u>mD</u> -ft)	Mean Transmissivity Multiplier	
KC1	184,980	2,517	74	
KC2	546,000	9,909	55	
KC3	218,630	2,212	99	
Note: mD-ft	Note: mD-ft = millidarcy-foot. *khoperational = injection index / 0.0014			

Permeability values assigned for flow zones.


Flow Zone	Initial Permeability (mD)	Final Permeability (mD)
Lower Copper Ridge	1,879	661
Nolichucky	3,900	74
Maryville	13,236	289

*accounts for thickness of injection zone at candidate site

Calibrated Simulation Results – CO₂ Plume Saturation

1.6 million metric tons CO₂ injection for 30 years (50 million mtons total) Vertical view Areal view

Conclusions

 This workflow presents a method to integrate wastewater injection operational data to validate CO₂ storage feasibility.

- In the study area, deep Cambrian-age vugular carbonate zones have high transmissivity, but the flow zones are difficult to evaluate with geophysical methods.
- These flow zones have been utilized for wastewater disposal wells in the region, and long-term operational data from these wells was a critical piece of information.
- Operational flow rates and pressures in wastewater disposal wells provide a practical validation of injectivity. In this case, reservoir transmissivity estimates from geologic models and well tests were almost 70 times higher than the transmissivities indicated by day-today operational metrics observed at nearby wells.

Thanks!

https://onlinelibrary.wiley.com/doi/abs/10.1002/ghg.1964

