National Risk Assessment Partnership Workshop

Ground Water Protection Council Underground Injection Control Conference

February 19, 2020

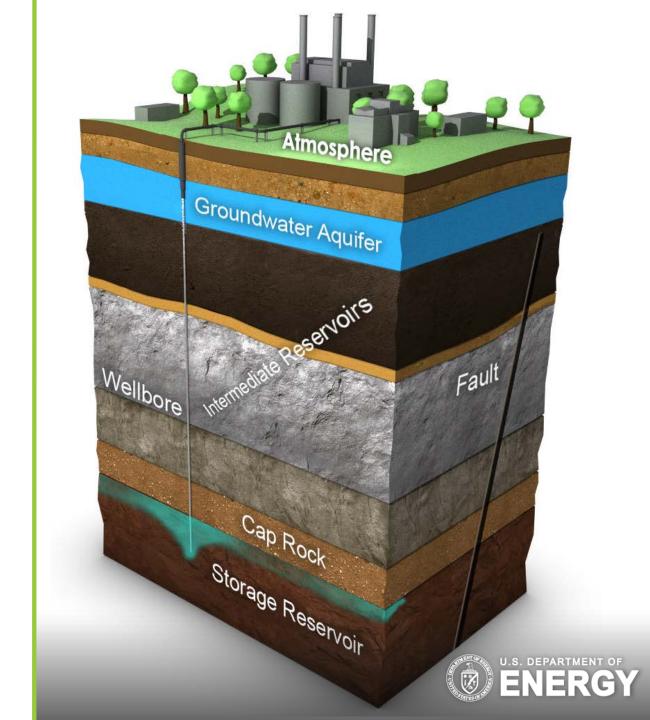
Today's Agenda

- Introduction
- Fluid Migration Characterization
- State-of-stress Characterization
- Risk-based Area of Review
- U.S. DOE's SMART Initiative
- Plume Dynamics and Conformance
- Induced Seismicity Management
- Monitoring for Leak Detection
- Site Closure
- Discussion

NRAP Approach and Research Products

Robert Dilmore

National Energy Technology Laboratory February 19, 2020



Integrated R&D Approach for Commercial-Scale Deployment

2017

Large Capture Pilots Initiated

2020

R&D Completed for Carbon Capture 2nd Generation Technologies

2017

Initiate Storage Feasibility for Integrated CCS

2022

Commercial-scale storage complexes characterized

Advanced technologies available for broad commercial-scale deployment

Integrated CCS
Projects initiated

U.S. DOE Carbon Storage Program

CARBON STORAGE PROGRAM

ADVANCED STORAGE R&D

Wellbore Integrity and Mitigation

Storage Complex Efficiency and Security

Monitoring, Verification, Accounting (MVA) and Assessment

STORAGE INFRASTRUCTURE

Regional Carbon Sequestration Partnerships Initiative

Characterization Field Projects (Onshore and Offshore)

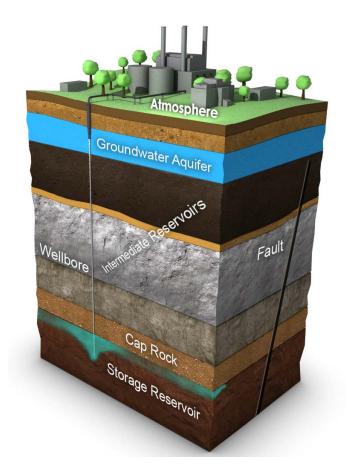
Fit-For-Purpose Projects

RISK and INTEGRATION
TOOLS

U.S. DOE's National Risk Assessment Partnership

NRAP leverages DOE's capabilities to quantitatively assess long-term environmental risks amidst significant geologic uncertainty and variability.

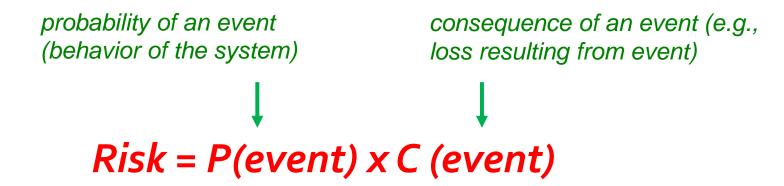
Technical Team



Stakeholder Group

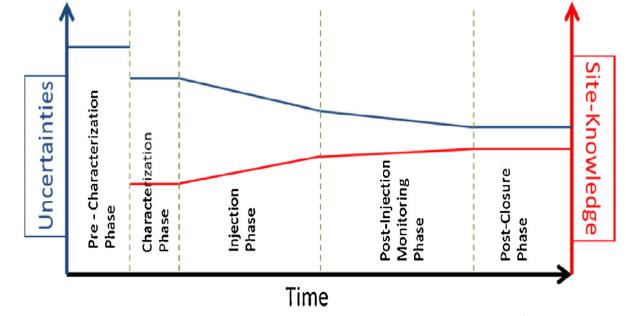
The NRAP team:

Technical Team



The NRAP approach

Focus: Using science-based prediction to inform decisions on CO₂ storage, amidst the complexity and uncertainty of engineered-natural systems.


The NRAP approach

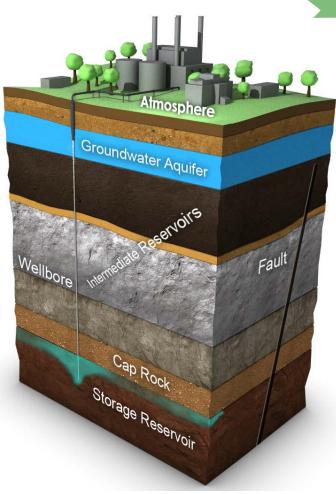
probability of an event (behavior of the system)

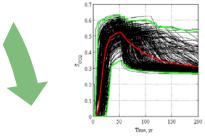
consequence of an event (e.g., loss resulting from event)

Risk = P(event) x C (event)

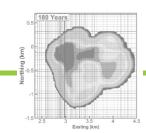
- Science-based
- Quantitative
- Site-specific
- Probabilistic considering uncertainty quantification / reduction
- Supports decision making

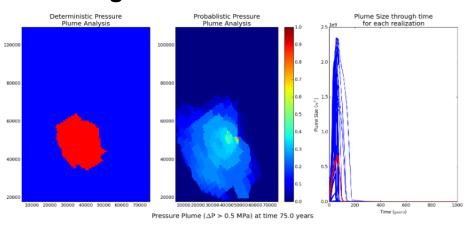
Pawar et al., 2015 9





NRAP's approach for rapid prediction of whole-system risk performance

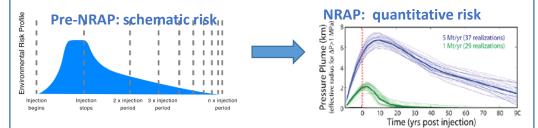

A. Divide system into discrete components


B. Develop detailed component models that are validated against lab/field data

C. Develop reduced-order models (ROMs) that rapidly reproduce component model predictions

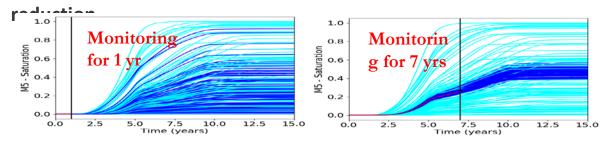
Integrated Risk Assessment

- D. Link ROMs via integrated assessment models (IAMs) to predict system performance
- E. Exercise whole system model to explore risk performance 10

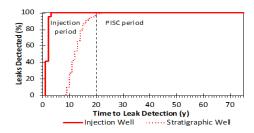


NRAP Phase I and Phase II

Phase I (2010–2016) Risk Assessment and Uncertainty Quantification



- Pioneered hybrid methods for quantifying complex systems (physics coupled to empirical, e.g., machine learning)
- Developed toolsets for quantifying storage post injection
- Developed foundation for strategic (risk-based) monitoring

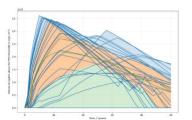

(e.g., DREAM tool; no-impact thresholds)

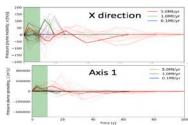
Phase II (2017–2022) Risk Management and Uncertainty Reduction

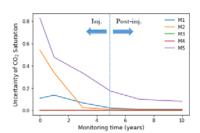
• Monitoring for leakage detection, conformance assessment, and unc.

Supporting risk-based decisions at GCS sites

• Considering risk-management alternatives

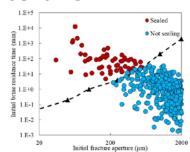


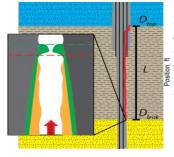


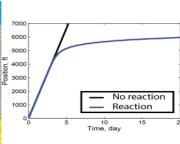


- Containment assurance / leakage risk
- Induced seismicity risk management
- Strategic monitoring for Uncertainty Reduction
- Validating NRAP tools and approaches
- Addressing critical risk-related questions

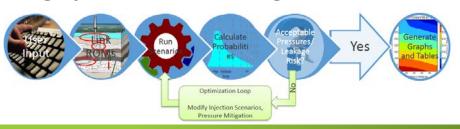
Developing integrated assessments of GCS site performance



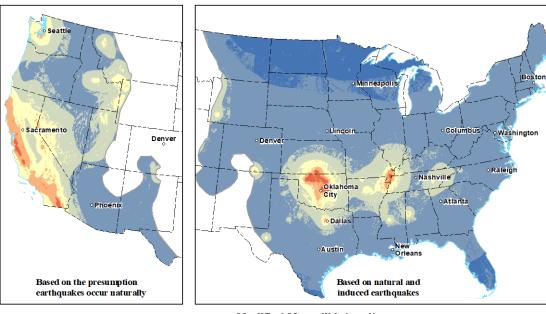




Developing improved characterizations of leakage


behavior

Modeling dynamic risk and mitigation



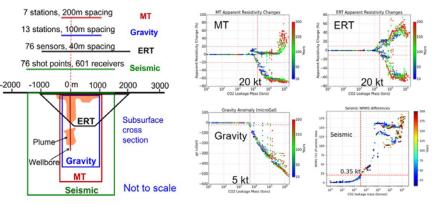
- Containment assurance / leakage risk
- Induced seismicity risk management
- Strategic monitoring for Uncertainty Reduction
- Validating NRAP tools and approaches
- Addressing critical risk-related questions

USGS Forecast for Ground Shaking Intensity from Natural and Induced Earthquakes in 2016

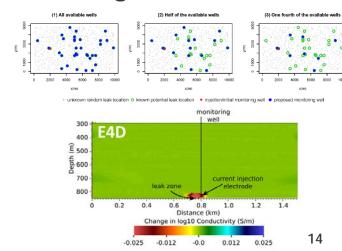
Modified Mercalli Intensity

VIII+	Shaking severe, heavier damage
VII	Shaking very strong, moderate damage
VI	Shaking strong, left by all, minor damage
V	Shaking moderate, felt indoors by most, ouldoors by mar
IV	Shaking light, felt indoors by many, outdoors by few
Ш	Shaking weak, felt indoors by several

USGS map displaying intensity of potential ground shaking from natural and human-induced earthquakes. There is a small chance (one percent) that ground shaking intensity will occur at this level or higher. There is a greater chance (99 percent) that ground shaking will be lower than what is displayed in these maps.

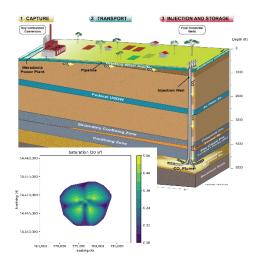


- Containment assurance / leakage risk
- Induced seismicity risk management
- Strategic monitoring for Uncertainty Reduction
- Validating NRAP tools and approaches
- Addressing critical risk-related questions


Modeling of Geophysical Monitoring

Layout of Surface Geophysical Methods Geophysical signals versus CO₂ leakage mass

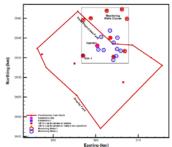
Risk-Based Monitoring Network Design

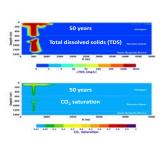


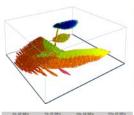


- Containment assurance / leakage risk
- Induced seismicity risk management
- Strategic monitoring for Uncertainty Reduction
- Validating NRAP tools and approaches
- Addressing critical risk-related questions

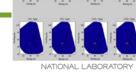
Retrospective risk assessment at FutureGen 2.0 site

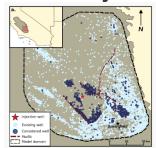


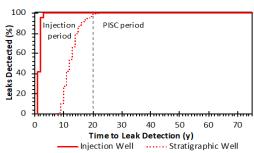

Application of NRAP tools at CaMI field test



Kimberlina, San Joaqin Basin, CA

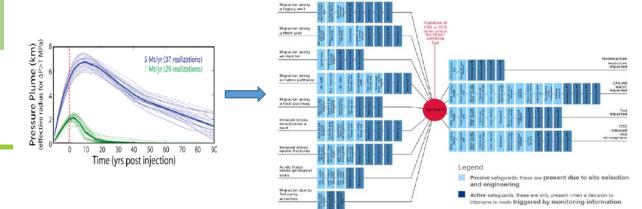






- Containment assurance / leakage risk
- Induced seismicity risk management
- Strategic monitoring for Uncertainty Reduction
- Validating NRAP tools and approaches
- Addressing critical risk-related questions

Risk-Based Post-Injection Site Closure


Recommended Practices / Workflows for Risk

Management

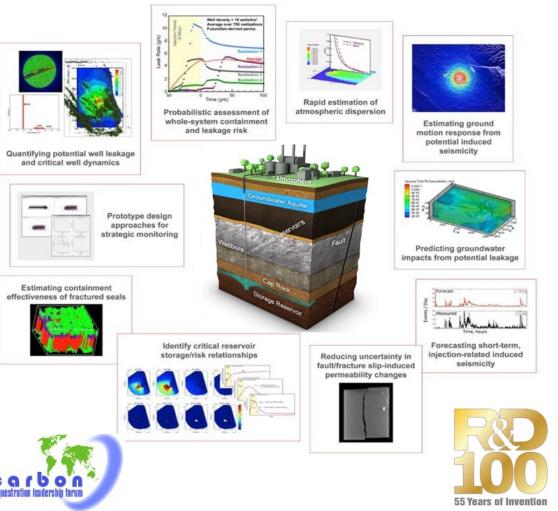
Mapping NRAP to Semi-Quantitative Approaches

Addressing critical risk-related questions

- How can we build confidence in our model of the subsurface system? Are projected risks within tolerance?
- How can we determine an appropriate, risk-based area of review?
- How can we design efficient and effective leakage monitoring systems?
- How can a risk-based approach be used to justify early closure at a GCS site?
- How do we use field data and modeling to predict and avoid impactful seismicity?
- How can we understand and manage risks at GCS sites (e.g., a brownfield site with many wells)?

What are NRAP products?

- Science Base
- Framework and approach
- Computational tools
- Workflows / recommended practices
- Insights for geologic carbon storage



NRAP Risk Assessment Tools

Phase I Toolset (November 2016)

Phase II Tools

Leakage Risk/Containment Assurance

 NRAP Open-Source Integrated Assessment Model (NRAP-Open-IAM)

Induced Seismicity Risk

- Short-term Seismic Forecasting Tool (STSF)
- State of Stress Analysis Tool (SoSAT)
- Probabilistic Seismic Risk Assessment Tool (RiskCat)

Monitoring Design and Optimization

- Designs for Risk Evaluation and Management (DREAM 2.0)
- Microseismic monitoring design optimization tool (forthcoming)

NRAP Tools Available at:

https://edx.netl.doe.gov/organization/nrap-tools

NRAP Products

NRAP Tools

- SOSAT
- -NRAP-Open-IAM New Beta Release!
- DREAM 2.0 New Beta Release!
- RiskCat **March 2020**
- NRAP Tools Webinars (sign up)
- Virtual Special Issue of IJGGC (March/April 2020)
- Recommended practices / workflows for risk management (drafts mid-2020)
- Community datasets
 - Select simulations from Kimberlina, CA
 - Select data and simulations from FutureGen 2.0

Agenda

- Introduction
- Fluid Migration Characterization
- State-of-stress Characterization
- Risk-based Area of Review
- U.S. DOE's SMART Initiative
- Plume Dynamics and Conformance
- Induced Seismicity Management
- Monitoring for Leak Detection
- Site Closure
- Discussion