State of the Art Techniques in Characterizing, Design and Operating Optimum Surface Spreading Groundwater Recharge Projects

Session 3: Surface Spreading Applications

Michael Milczarek
Surface Spreading Applications

- MAR Basins
 - Dedicated surface water supply, effluent
- Riverbank/Bed Filtration
- Ag MAR, Flood MAR, On Farm Recharge (OFR)
 - Periodic flood/peak water
- Multi-benefit MAR
 - MAR to support riparian and wildlife habitat, Parks
- Stormwater Capture and Recharge
 - Detention, channel and basin recharge
- Recharge Enhancement Methods
 - Infiltration Galleries
 - Drywells and Vadoze Zone Injection wells
 - Wick drains, Parjana EGRP
Riverbank/Bed Filtration

- Surface water treatment to remove sediment and lower organic carbon and macronutrients
 - Orange County Water District (Milczarek 2010)
 - Fifteen Mile MAR/ASR project (this conference)
Ag-MAR, Flood MAR, On-Farm Recharge

- Recharging flood flows into basins or farm lands
- In CA, 2 to 3 wet years every 10 years
- Extensive research into crop effects
 - Bachand et al., 2012, 2014, 2017, Dahlke et al, 2018
- Potential water quality effects
- Watch Plenary Session and other papers

Provided by CA DWR
Off-channel Basins
Groundwater Banks/Dedicated Fields

• Just in Kern County
 – AVEK WSSP
 – AVWB
 – Kern Water Bank
 – Pioneer Water Bank
 – Berrenda Mesa WD Water Bank
 – Kern Delta WD Water Bank
 – North Kern WSD Water Bank
 – Shafter Wasco ID Water Bank
 – Semitropic WSD Water Bank
 – Buena Vista WSD Water Bank
 – Rosedale Rio Bravo WSD Water Bank

• Growers Recharging
 – Sun World
 – Wonderful (Paramount)
 – Pacific Resources & Pacific Ag
 – JG Boswell
 – Marvin Meyers
 – Maricopa Orchards

State of the Art Techniques in Characterizing, Design and Operating Optimum Surface Spreading Groundwater Recharge Projects
Session 3: Surface Spreading Applications
Multi-benefit MAR

- Walla Walla Watershed MAR
 - Approximately 7,000 afa used to support agriculture and maintain low flows in Walla Wall River
 - Scherberg et al., 2014, 2018
- Colusa County Multi-benefit MAR Project
 - MAR to support agriculture, DACs and migratory bird habitat
 - Barfield – this conference
- Parks (Effluent MAR)
 - City of Tucson Sweetwater Facility
 - City of Gilbert Riparian Preserve at Water Ranch
 - City of Sierra Vista Environmental Operations Park
 - Many others

17th Biennial Symposium on Managed Aquifer Recharge
Resilience Through Recharge and Recovery
State of the Art Techniques in Characterizing, Design and Operating
Optimum Surface Spreading Groundwater Recharge Projects
Session 3: Surface Spreading Applications
Stormwater Capture and Recharge

• Numerous small-scale stormwater detention and recharge systems throughout AZ, CA, OR and WA

• Projects to quantify stormwater capture and recharge
 – Upper San Pedro River Basin
 • Lacher et al., 2014, Bunting – this conference
 – Stanislaus County Dry Creek Project

• Challenges:
 – How much runoff can be captured and when?
 • Most ephemeral/unallocated sources are ungauged
 – Sediment control and contamination?
 – Site hydrogeology?
 – Defining water rights/instream flow requirement/allocations
Recharge Enhancement Methods to Access Higher Permeability Sediments

- Over 50,000 drywells in Phoenix area alone
- Vadose zone injection needs very pure water and maintenance (Gastelum, et al, 2009)
- CA is developing new drywell guidance (water quality)

Infiltration galleries have higher benefits than drywells
 - Restricted to 10-15 feet bgs
Underground Infiltration Galleries

Atlantis Tanks

CMP

ChamberMAX
Other Potential Recharge Enhancement Methods

Vertical Wick Drains

Provided by American Wick Drain

Parjana EGRP

Session 3: Surface Spreading Applications
How Do We Make Projects Successful?

- Course is focused on basins – but same tools are needed for other applications
- Riverbed/bank filtration should be considered for surface water pre-treatment
- Ag/Flood/On Farm MAR has significant potential benefits but water quality needs to be addressed
- ALWAYS think of Multi-benefit MAR
- Stormwater capture and recharge has significant modeling and design challenges
- Site limitations may require use of recharge enhancement methods
Ag MAR Water Quality Case Study
Keck’s Corner Water Bank

• Proposed 260 acre water bank
 – Five-acre pilot test (2019)
 – Water table approximately 80 to 90 ft bgs

• Monitoring:
 – Nested vadose zone and groundwater well (MW-1)
 – Inflow, weather station, stage
 – Drill core leaching tests

• Test ran for 3 months
 – Avg 1.0 ft/day infiltration
 – Wetting front arrival = 14 days
 – 1 PV = 38 days
Drill Core 1:1 EC Extract

Electrical Conductivity (dS/m)

Depth (feet)

- MW-1
- BH-2
- BH-3
Drill Core Flushing Data

Electrical Conductivity (uS/cm) vs. Estimated Pore Volume

- BH3 40-44.5
- MW1 39-40.5
- MW1 42-43.5
- BH2 46.5-48
- Tap Water EC

Session 3: Surface Spreading Applications
25 ft Lysimeter Water Quality Data

Groundwater Quality Data

State of the Art Techniques in Characterizing, Designing, and Optimizing Surface Spreading Groundwater Recharge Projects

Session 3: Surface Spreading Applications
Groundwater Data

![Graph showing groundwater data with various dates and measurements.](image)
Conclusions

- Potential water quality impacts depend on:
 - Length of historic agriculture and leaching fraction
 - By agricultural land use
 - By soil type

- Initial flush of water will most likely exceed SDWA parameters for TDS (secondary), possibly antecedent NO$_3$ and oxyanions
- Field studies indicate 1 to 3 pore volumes needed to flush majority of vadose zone
- Projected flushing is dependent on duration of recharge