Statewide Mapping of California’s Aquifers with Airborne Electromagnetics (AEM)
Presentation Outline

• California Hydrology

• Sustainable Groundwater Management Act and Drivers

• California Statewide AEM Project
 • Stanford Groundwater Architecture Project (GAP)
 • Statewide SGMA Priority Groundwater Basin Mapping Program

• Airborne Electromagnetic (AEM) Geophysics
 • Innovative tool for improved understanding of the hydrogeology of the groundwater basins

• Examples
 • Mapping Regional Hydrogeological Formations
 • Mapping Saltwater Intrusion in Coastal Areas
 • Mapping Brackish Water in Desert Basins
California’s Water Supply: ~15-15-15MAF
GW-SW-Snowpack

MAF = Million Acre Feet = 1.2335 km³

850-1,300 MAF
Groundwater Basins

515

CAPACITY

50 MAF
1400 Dams/Reservoirs

Seasonal Snowpack

15 Million Acre Feet
Snow Pack Storage
(1956 - 2000 average)

25% reduction
(4.5 Million Acre Feet)
Mismatch of Precipitation Location to Demand

Nearly one-half precipitation in north portion of state, and nearly one-half demand in south, so a massive surface water conveyance system was constructed.
California Groundwater Use: Normal Years ~ 40 %
Dry Years + 60%

Intensity
- None
- D0 (Abnormally Dry)
- D1 (Moderate Drought)
- D2 (Severe Drought)
- D3 (Extreme Drought)
- D4 (Exceptional Drought)
- No Data

JUNE 18, 2022

Groundwater Basins
Cumulative Change in Storage in GW Basins
Central Valley 1962-2014: Loss of 100 km3 in 52 years

$100 \text{ km}^3 = 81 \text{ MAF} = 26 \text{ Trillion Gallons} = 2,200 \text{ Cubic Feet/Second}$

Ref: USGS
Perfect Storm: 2014 The Year of Groundwater

• Early 2000s Revelations on Nitrate in Central Valley
• Historic Drought with Subsidence, Infrastructure Damage, Dry Wells
• Governor’s Water Action Plan
• $7.5B Water Bond Passed
• Historic Groundwater Legislation (100 years after surface water permitted)
 • Making the invisible groundwater visible
SGMA Steps to Groundwater Sustainability

Step one
Form Groundwater Sustainability Agency
June 30, 2017

Step two
Develop Groundwater Sustainability Plan
January 31, 2022
January 31, 2020**

Step three
Achieve Sustainability 20 years after adoption of plan*
January 31, 2042
January 31, 2040**

* DWR may grant up to two, five-year extensions on implementation upon showing good cause and progress.

** Critically overdrafted basins have two years less for GSP and to achieve sustainability.
Requires Groundwater Sustainability Agencies & Plans

- Required in high and medium priority basins
- Excludes 26 adjudicated basins except for reporting
- Creates state “backstop”
- Sets timeframe for accomplishing goal of sustainable groundwater management
- Raises bar on groundwater management
 - Big driver for state and local agencies to better understand the subsurface
AEM Statewide Project Background – Proof of Concept

Stanford Groundwater Architecture Project

Three 800 km Pilot Projects Conducted:

• Data management system set up for sharing all the datasets
• Integration of digital well data for confirmation
• Aarhus Workbench used for processing, inversion, and visualization of geo-datasets
• Model approaches tested for transform resistivity to lithology and populating cells in the model
• Developed approach for quantifying uncertainty
• Prepared Report and Recommendations for Statewide Program
• Funded by California State Agencies, Kingdom of Denmark, Butte County, San Luis Obispo County, and Indian Wells Valley Water District

https://mapwater.stanford.edu/
Regional-scale AEM surveys in California’s SGMA priority groundwater basins

• Project Goal:
 • Provide a standardize dataset to improve the understanding of large-scale aquifer structures and support the implementation of SGMA.

• Project Objectives
 • Assist local managers implement SGMA to manage groundwater sustainably.
 • Help with the development or refinement of hydrogeologic conceptual models and to identify areas for recharging groundwater.
Regional Mapping of Groundwater Systems

• We need to know more about the subsurface

• Geophysics
Airborne Electromagnetic (AEM)

- Flight height: 30-50 m (100-165 ft)
- Speed: 100 km/hr (60 mph)
- Daily production: 200 line-km/day (125 line-miles)
- Depth: 200-300 m (650-1,000 ft)
- No need for direct contact to the ground / fast data acquisition
- AEM Line spacing
 - Focused studies – 250m to 500 m
 - Regional scale – 1 to 2 km or more
A recent AEM survey in California
AEM Principles

- Transmitting signal into the ground
 - TEM system – sender and receiver
 - Magnetic data acquisition system
 - Two inclinometers
 - Two altimeters
 - Two Differential GPS units
 - Video camera on helicopter
AEM Principles

• Receiving Earth’s response
What does AEM measure?

- Electrical resistivity of the formation

![Graph showing typical relationship between resistivity, lithology, and salinity](chart.png)
DWR Statewide AEM Surveys

- AEM Flightline Planning conducted by DWR with input from local, state, and federal agencies on priority areas
- AEM Flightline Plans are reviewed by Ramboll, SKYTEM and Sinton Helicopters and adjusted as needed for potential interferences and safety
- AEM Field Surveys conducted by Ramboll, SKYTEM, Sinton Helicopters
- Ramboll conducts AEM data processing and inversions with assistance from Aarhus University; GEI provides support on datasets, GIS and reporting; Eclogite and RAS provide existing well lithology and borehole geophysics datasets for quality assurance/ control
- Data collected in coarsely spaced grid (2 by 8-mile grid)
AEM Survey Deliverables

• Comprehensive Data Reports
 • Methodologies and Field Collection Observation/Metrics

• GeoDatasets
 • AEM inversion & lithology transform
 • Nearby well lithology, water level, water quality (TDS) data
 • All data digital, delivered online and publicly available

https://water.ca.gov/Programs/Groundwater-Management/Data-and-Tools/AEM
Digitization of well completion reports and geophysical logs for use in validation
Survey Status To Date

- Surveyed flight lines: 22,225 km
AEM Electrical Resistivity Model

Northern Central Valley
AEM Electrical Resistivity Model

North Coast Ranges
Basin-Wide Regional Aquifer Structure

Salinas Valley

120 miles

40 miles
Data Report and Dataset Publication

Data and Resources

<table>
<thead>
<tr>
<th>Survey Area Map</th>
<th>Map showing Survey Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Area 1 - Salinas Valley Data Report</td>
<td>Provisional Data Report for the Salinas Valley portion of Survey Area 1.</td>
</tr>
<tr>
<td>Survey Area 1 - Cayucos Valley Data Report</td>
<td>Provisional Data Report for the Cayucos Valley portion of Survey Area 1.</td>
</tr>
<tr>
<td>Survey Area 1 - Flown Survey Lines</td>
<td>Provisional from flight lines for Survey Area 1</td>
</tr>
<tr>
<td>Survey Area 1 - Salinas Valley AEM Data</td>
<td>Provisional AEM data package containing provisional AEM data acquisition parameters, raw and inverted AEM...</td>
</tr>
<tr>
<td>Survey Area 1 - Cayucos AEM Data</td>
<td>Provisional AEM data package containing provisional AEM data acquisition parameters, raw and inverted AEM...</td>
</tr>
<tr>
<td>Survey Area 1 - Support Data</td>
<td>Data package of compiled supporting data used to support the AEM data interpretation, including...</td>
</tr>
<tr>
<td>Survey Area 2 - Flown Survey Lines</td>
<td>Provisional from flight lines for Survey Area 2</td>
</tr>
<tr>
<td>Survey Area 2 - AEM Data (limited)</td>
<td>Provisional AEM data package containing provisional AEM data acquisition parameters, raw and inverted AEM...</td>
</tr>
<tr>
<td>Survey Area 2 - Support Data</td>
<td>Data package of compiled supporting data used to support the AEM data interpretation, including...</td>
</tr>
<tr>
<td>Survey Area 3 - Flown Survey Lines</td>
<td>Provisional from flight lines for Survey Area 3</td>
</tr>
<tr>
<td>Survey Area 3 - Raw Data</td>
<td>Raw Data from Survey Area 3</td>
</tr>
<tr>
<td>AEM Data Viewer</td>
<td>The AEM Data Viewer shows resistivity data from 01_KYZ_AEM 02_Sharp VLF 03IP...</td>
</tr>
</tbody>
</table>

Report

https://data.cnra.ca.gov/dataset/aem

AEM Data

- 01_Raw Data
- 02_Database
- 03_Sections and Thematic Maps
- 04_KYZ_Data
- Readme
- Readme_DWR_Disclaimer

Supporting Data

- AEM_WELL_INFO.csv_W01_2022
- AEM_WELL_LITHOLOGY.csv_W01_2022
- AEM_WELL_WATER_LEVEL.csv_W01_2022
- AEM_WELL_WATER_QUALITY.csv_W01_2022
- Geophysics_W01_20221113
- ReadMe
- Readme_DWR_Disclaimer
Example – Indian Wells Valley, Mojave Desert

- Objectives:
 - Delineate the extent of brackish water
 - Connectivity between upper and lower aquifer
 - Map other notable basin structures and features, e.g. faults, buried stream channels, recharge
 - Update hydrogeologic conceptual framework
Connectivity Along Eastern Sierra Nevada Mountain Front
Interpretation of Structures and Lithology

- **Miocene Ricardo Group.**
- **Pleistocene Alluvium**
- **Hydrological barrier dividing the groundwater basin**
- **Potential infiltration sites**
- **Sierra Nevada Frontal Fault**
- **Brackish**
- **Saturated Clay**
- **Sand and gravel**
- **Unsaturated**
- **Bed rock**
Example – Monterey Bay, CA

• **Goal**: improve understanding of freshwater-saltwater interaction in a coastal environment

• 200 line-miles of near shore survey
2 TO 4 M B.S.L.
30 TO 35 M B.S.L.
Goebel Meredith, Knight Rosemary, Halkjær Max, (2019), Journal of Hydrology, Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay, California
Local, Site-Specific Investigations

• Managed Aquifer Recharge
• Geotechnical

• Assess site suitability for infiltration
 • Detect high-K zones
 • Vertical hydraulic connectivity across the site
 • Complex geology (buried channels, thin impermeable layers, ...)

34
Local, Site-Specific Investigations
Ideal for Shallow (<200m) Subsurface Survey
Local, Site-Specific Investigations

• Detailed 3D characterization of the subsurface
Thank You

Bright ideas. Sustainable change.

TKParker@ramboll.com