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Agenda
• Some background: What are current sources of 

electricity and how are energy and power related?
• Where does Earth’s heat come from for making 

geothermal energy?
• Where are most geothermal systems found?
• How is geothermal energy used?
• What are some key attributes and challenges of 

geothermal energy?
• What criteria are needed to make a geothermal system 

viable for power generation?
• What are some exciting new technologies for 

expanding availability of geothermal energy and 
recovery of critical minerals?
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(13.5% in 2014)

(20% in 2014)

(40% in 2014)

(25% in 2014)

~60% from 
fossil fuels in 
2022 
including oil

~66% in 
2014 
including 
oil

Some Background 
on Current and 
Recent Past 
Sources of 
Electricity 
Generation

• In CA, geothermal electricity 
accounted for about 6% of 
state’s electrical production 
(CEC report, 2020)

• In Nevada, geothermal 
accounted for ~10% of state’s 
electrical generation (Highest 
per capita usage of geothermal 
energy in the U. S.!)



Measuring Energy and Power
• Basic unit of Energy is Joule; basic unit of Power is Watt
• One Watt of Power = 1 Joule per second (P = E/t)

• One kiloWatt (1 kW) = 1000 Joules/second; one MegaWatt (1 
MW) = one million joules/s

• MW is typically used in rating delivery of energy output of 
power plants or rate of energy output for geothermal wells

• One MW of power serves about 750–1000 homes

• Energy = Power x time  kiloWatt x time (in power 
industry unit of time is hour) kWh on your power bill

• Energy generated from power plants measured in MegaWatt-
hour (MWh) or GigaWatt-hour (GWh)  Palo Verde nuclear 
plant in Arizona (3.9 GW x 24 hrs/day = 93.6 GWh of energy 
per day)
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Earth’s Interior Contains Heat
• Earth is a giant heat engine ability to do work

• What might be examples of this work?
• Erupting Volcanoes

• Earthquakes
• 2011 9.0 M Tohoku EQ moved ~1500 km of ocean floor 50 m (released 

enough energy in a few seconds to power the U. S. for almost 3 months!)

• But wait that’s not all: the 1960 M 9.5 Chilean EQ released enough energy to 
power U. S. for almost 1 year!

• Continually moving great chunks of Earth’s crust and upper mantle over 
great distances for a long time (heat energy that drives plate tectonics)

• Thermal energy is vast!
• Tapping <1/1000th of one percent of thermal energy of upper crust 

would equal the US energy consumption in a given 
year

Boden 2023 5



Where Does the Earth’s Heat Come From?

1. Residual heat left over 
from Earth’s formation 4.6 
Ga

• Earth grew from accretion of 
debris, where kinetic energy 
was converted to thermal 
energy

• Earth’s core is about the same 
temperature as the surface of 
the Sun (~6000°C)

2. Radioactive decay of U, Th, 
and K

3. Gravitational pressure
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Source: 
https://www.energy.gov/sites/default/files/2019/06/f
63/GeoVision-full-report-opt.pdf



What is Geothermal 
Energy?
• Harnessing Earth’s heat for society
• What are some uses?

• Produce electrical power (T >~100℃)
• Direct use of geothermal fluid (T >~40 ℃)

• More energy efficient than power 
production

• Heat (cool) buildings and homes
• Aquaculture (fish hatcheries)
• Greenhouses and fruit/vegetable drying
• Spas and resorts 

• Geothermal Heat Pumps (T 10°– 15℃)
• Can be used anywhere
• Use Earth as a thermal bank
• Reduce energy costs by  as much 40%. 

Why?
• Actually largest application of direct use 

(71%)
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Note correspondence between 
distribution of geothermal 
systems and boundaries to 
tectonic plates

Tectonic Plates

Worldwide Distribution 
of Geothermal Systems

Total: ~16,100 MWe (As of January 2023)
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*For Power Production

*



Uses of Geothermal Energy with Depth 
and Temperature
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Modified after Moore and 
Simmons, 2013



Geothermal Heat Pumps (heating and cooling)
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Figure Source: Duffield and Sass, 
USGS Circular 1249, 2003

• More efficient to transfer energy than to 
produce energy

• For every unit of electricity used, system 
gleans or dissipates 3-4 units of heat

• About 40% more efficient than air-source heat 
pumps

• Downside: More expensive upfront costs (ROI 
about 3-6 years for new construction)

• Upside: 30% tax credit to defer costs
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What is Needed to Make a Geothermal 
Fluids Viable for Development?
• Five main criteria to 

make a hydrothermal 
resource economically 
viable:
1. Large heat source
2. A permeable reservoir
3. A supply of water
4. A impermeable cap rock
5. A steady recharge 

mechanism

Impermeable Cap 
Rock

Image courtesy of 
M. Coolbaugh as 
modified from GEO

Groundwater



Direct Use of Geothermal Fluids
• E.g., Boise, ID 

district geothermal 
heating system

• Largest in U. S.
• Began in 1890
• System now heats 

about 7.5M ft2 in 
about 100 
buildings

• Fluid T: 72-75℃
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Figure source: 
Beckers et al., 2021



Uses of Geothermal Energy with Depth 
and Temperature
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Modified after Moore and 
Simmons, 2013



Types of Geothermal Systems and Related 
Power Plants

• Vapor (steam)-dominated
• Provide greatest amount of power per 

mass of fluid
• Because reservoir is already steam, all 

fluid mass goes to turbine
• In order for fluid to occur as steam, 

reservoir is underpressured compared to 
surrounding rock—geologically rare 
conditions 

• World class examples are The Geysers, CA 
and Larderello, Italy (the first 
commercially produced geothermal 
reservoir for power generation in 1913).
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After Duffield 
and Sass, 2003



Types of Geothermal Systems and Related 
Power Plants

• High-temperature, liquid-
dominated

• T ≥ ~180°C
• Mainstay of the industry (flash)
• Fluid exists as a liquid in reservoir
• Begins to boil as pressure falls when fluid 

rises up well (mixture of steam and liquid—2 
phase fluid)

• From wellhead, 2-phase fluid goes to 
separator where steam rises to top and 
liquid goes to bottom

• Only steam goes to turbine, and liquid is re-
injected

• Energy is partitioned as only steam goes to 
turbine
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After Duffield 
and Sass, 2003
After Duffield 
and Sass, 2003



Well 24-5 Upper Steamboat Field, NV
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Separators

Wellhead

Steam pipes to 
power plant

Muffler

After shut-in 
and 
servicing, 
fluid in well is 
allowed to 
flow to 
muffler until 
T is high 
enough to 
bring steam 
to power 
plant.



Types of Geothermal Systems and 
Related Power Plants

• Moderate-temperature, liquid-
dominated

• T > ~100 - 180°C
• Provide an increasing proportion of power.  

Why?
• Lower T systems are more common than high T 

systems

• Binary systems
• Two fluids—the geothermal fluid provides the 

heat, and a working fluid that serves the turbo-
generator

• Geothermal fluid passes through heat exchanger 
to flash working fluid having a low boiling point to 
generate more steam pressure than water 

• Both geothermal and working fluids form closed 
loops therefore there are no emissions of GHGs
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After Duffield 
and Sass, 2003

After Duffield 
and Sass, 2003



Installed U. S. Geothermal Power Capacity 
(Resource Type/Technology)
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NREL report, 2021 
(https://www.nrel.gov/docs/fy21o
sti/78291.pdf)

Liquid Dominated

Vapor Dominated



Geothermal Energy Attributes
1. Base load power (available 24-7 unlike wind and solar);

• New technology allows for load following and dispatchable energy
• 90%+ capacity factors (ratio of energy produced over a given time; 

only nuclear is comparable)
• Solar and wind capacity factors typically 25-35%; coal- and natural-

gas-fired power plants about 50-70%

2. Sits on top of energy source;
• No fuel price exposure; price certainty; insulated from price 

volatility; 

3. Promotes energy diversity; 
4. Proven resource, mature technology (dating back to 1913 

in Italy and 1958 in New Zealand);
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Geothermal Energy Attributes
5. Economic impact on construction/operation: number of 

jobs per MW;
• CalEnergy Salton Sea: ~390 MW; ~240 employees (about 1 employee for 

every ~1.6 MW produced)

• Comparably sized natural gas plant: 15 employees; commercial solar/wind 
plant: 10-15 employees (1 employee for every 25-34 MW produced)

6. Minimal environmental impacts:
• Minor or no greenhouse gas emissions 

• Conventional geothermal flash plant releases only 2% GHG emitted by NG-fired 
power plant

• Binary plants have ZERO greenhouse gas emissions

• Small footprint for power produced (1-3 acres/MW compared to an 
average of 85 acres/MW for wind (NREL/TP-6A2-45834, 2009) and about 
10 acres/MW for solar (https://betterenergy.org/blog/the-true-land-
footprint-of-solar-energy/)

• Land available for multiple use
Boden 2023 21
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https://betterenergy.org/blog/the-true-land
https://betterenergy.org/blog/the-true-land


GEOTHERMAL FOOTPRINT 
IS SMALL  

22

Modified after image courtesy of P. Thomsen, Ormat 
Technologies

• At McGinness Hills, NV about 1 acre 
is required for every MW

• Solar PV requires about 
10 acres/MW* (varies depending 
on latitude, efficiency of installed 
panels, time of year, and setbacks 
and zoning restrictions)

~ 1500 to 3000 

*Does not include storage facilities for 
round-the-clock power availability as 
with geothermal.  If so, then then solar 
footprint increases to about 15-20 
acres/MW
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Land Available for Multiple Use
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Miravalles geothermal field, Costa 
Rica. After DiPippo, 2012

Geothermal plant in Imperial 
Valley, CA. Source: NREL Image 
Gallery

Blue Lagoon Spa at Svartsengi 
geothermal plant, Iceland



Principal Geothermal Challenge
• Higher cost compared to solar PV and wind

• Reflects higher risk and expense to develop

• Policy intervention to promote non-intermittent renewable energy 
sources

• e. g., 2021 CPUC Energy Procurement Order requires an additional 2000 MW of 
geothermal by 2035

• Expand oil and gas exploration efficiencies that currently do not require EA or 
EIS under NEPA to include geothermal
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After Bolinger et 
al., 2023

~$55/MWh

~$36/MWh



Exciting Emerging Pursuits 
• Generating Artificial Geothermal Reservoirs 

(Engineered Geothermal Systems or EGS)
• Developing Hot Sedimentary Aquifers
• Harnessing Superhot/Supercritical Geothermal 

Reservoirs
• Using supercritical CO2 as a working fluid
• Applying Closed-Loop Technology
• Recovering Li From Geothermal Brines
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EGS
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After Simmons 
and Allis, 2015



Engineered Geothermal Systems (EGS)
• Artificially generated convecting hydrothermal system. How?

• By injecting water deep underground (3-5 km)
• By improving permeability via thermal shocking (hydroshearing) and hydrofracking

• Hot rocks contract and fracture when exposed to cold injected fluid improving 
permeability (hydroshearing)

• Hydrofracking fluids pumped down under high pressure to stimulate fracture 
permeability

• Fracture permeability achieved in stages via zonal isolation (using bridges and plugs) to 
maximize size of engineered reservoir

• Upside:
• Have the potential to increase current geothermal power output by 1 to 2 orders of 

magnitude (10x to 100x) (Tester et al., 2006). Why?
• Hot rock is much more widely distributed than hot rock with circulating water (currently 

developed conventional systems)
• Much less restricted to specific geological favorable regions, such as along and near plate 

tectonic boundaries
• Significant reduction in CO2 emissions by displacing fossil-fuel-fired power plants by 

making geothermal power more widespread than currently
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EGS (DOE-Supported FORGE Venture)
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Fig. courtesy of 
C. Jones and J. 
Moore, FORGE

• Injection well shown in 
blue; production well 
shown in red. Physical 
separation of two wells in 
reservoir ~150 m.

• Each well drilled over a 
period of 2.5-3 months 
with TD in each well of 
about 11k feet (~8000 ft 
deep with about 3000 
feet lateral legs

• Bottom hole T about 
230℃

• Injection well stimulated 
in 3 stages



Engineered Geothermal Systems (EGS)
• Challenges:

• Financial: Must drill deeper with deep horizontal legs which is 
expensive 

• Water: Available source of water as significant amount of 
injected water can be lost into the rock formations and no 
longer available for recirculation

• Potential Induced Seismicity: Injecting cold water causes hot 
rock to fracture (good for permeability) but can create small 
earthquakes felt on surface

• Heat Recovery Over Time: Imperfectly known on the time 
frame how repeated injection of relatively cool water will 
lead to cooling of the reservoir

• Changes in Permeability Over Time: Changes in pressure and 
temperature can cause fluids to precipitate minerals in 
fractures as they circulate from injection to production wells
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Hot Sedimentary Aquifers
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After Simmons 
et. al., 2017

Require permeable 
sedimentary layers at 
depths of 3-5 km in 
regions of elevated 
heat flow (>90 
mW/m2) to achieve 
power generation 
temperatures of 
150° to 200°C.



Hot Sedimentary Aquifers
• Schematic Cross Section of Great Basin system

• Direct Use of HSA (Paris basin)
• 65-85℃ fluid in Dogger aquifer at depth of 1.5–2.0 km
• Over 150,000 buildings served by systems from 40 geothermal sites
• Fluid flow rates of 900-2500 gpm
• Little or no degradation in T from 50 years of production

Boden, 2023 31

After Simmons et al, 2017

Note the large surface area of hot sedimentary aquifers 
compared to fault-related geothermal systems developed 
by current geothermal power facilities in Nevada

After Simmons et. 
al., 2017



Superhot/Supercritical Geothermal 
Systems
• Being explored by Iceland Deep Drilling Project (IDDP), Japan 

Beyond the Brittle Project (JBBP), and Hotter and Deeper 
Exploration Science (HADES) in New Zealand.

• What is supercritical water?
• Fluid with properties intermediate 

between liquid and gas (density of liquid 
but mobility of gas)

• Little or no acid problem because T too
high (no liquid water) to form reactive H+

• Much greater energy (enthalpy) and mass 
transfer compared to conventional liquid-
and vapor-dominated system

• Well tapping supercritical reservoir would
have 5x –10x power output of a 
conventional well 

• 5 to 10 fold fewer wells 
needed, saving $30M–$60M
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Using Supercritical CO2 (ScCO2)
• Advantages:

• 3x–5x higher mass flow rates than 
water (makes up for lower heat 
capacity compared to water)

• Large density contrast between cold 
and hot ScCO2  means strong buoyant 
forces reducing power consumption for 
pumping

• Can help sequester CO2 produced from 
fossil-fuel fired power plants

• Little or no scaling or corrosion of 
equipment as ScCO2 is not an ionic 
compound

• Challenges:
• Getting CO2 from power plants or 

extraction from air is expensive
• Unknown reactions with wallrocks at 

depth that could precipitate carbonate 
minerals reducing permeability
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Closed-Loop Technology
• Two different configurations 

being explored:
• 1. Modify existing nonproductive 

wells (GreenFire’s GreenLoop 
technology)

• 2. Drill deep well with multiple 
laterals at depth to extract heat 
(Eavor technology)

• GreenLoop Technology
• Utilizes down borehole heat 

exchanger
• Induces convection outside of 

borehole
• Steam condenses on outside of 

borehole transferring additional 
heat to injected fluid from that 
provided by conduction

• Mainly for steam-dominated and 2-
phase geothermal reservoirs
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Source: https://www.greenfireenergy.com/power-generation/



Closed-Loop Technology
• Deep Lateral Wells Configuration 

(Eavor Technology)
• A fluid with a low boiling point is 

injected into a series of piping laterals 
at depth where it picks up heat to 
return to the surface to fuel a power 
plant and then reinjected

• Potential Advantages:
• Can be applied anywhere (scalable)
• No need to find zones of natural 

permeability
• No need to artificially induce 

permeability via 
rock fracturing (EGS)

• Avoids potential problems of producing 
from geothermal fluids (scaling and 
corrosion of equipment)

• No added or make-up water needed

• Potential Challenges:
• Cooling of working fluid with time 

(conduction v. convection)
• Initial high cost due to technologically 

advanced drilling technology (deep 
lateral well configuration)
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Li From Geothermal Brines

• Salton Sea geothermal field in SE CA 
has an installed geothermal power 
capacity of about 440 MW from 11 
power stations

• Geothermal brines contain 
250,000–300,000 ppm TDS

• Enriched in Mn, Zn, and Li
• Li concentration as high as 400 ppm; 

ave. 250–300 ppm
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Modified after Hulen et al, 2002



Li From Geothermal Brines
• Salton Sea geothermal field has a resource potential of 

600,000 tons/year of Li carbonate equivalent (CEC Report, 
2020: https://www.energy.ca.gov/sites/default/files/2021-05/CEC-500-2020-
020.pdf)

• Enough to make about 18,000,000 100kWh Tesla batteries/yr
• About 5-10x the planned production of Thacker Pass Li open-

pit mine (largest identified minable rock hosted Li-resource in 
NA) 

• Depending on the price of Li carbonate of estimated 
resource, a potential revenue of $7B to $30B per year 
could be realized

• Infusing much needed prosperity for an economically 
depressed region

• Dramatically increase domestic production of Li– 90% of 
which is currently imported from Chile and Argentina (Source: 
https://www.energy.gov/eere/vehicles/articles/fotw-1225-february-14-
2022-2016-2019-over-90-us-lithium-imports-came)
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Agenda (Epilogue)
• What is geothermal energy and where does the heat 

come from?
• How are energy and power related?
• How is geothermal energy used?
• What criteria are needed to make a geothermal system 

viable for power generation?
• What are some key attributes and principal challenge 

for using geothermal energy?
• What are some exciting emerging technologies for 

harnessing geothermal energy including recovery of 
critical minerals from geothermal brines?
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THANK YOU!
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Image credit: GeoGlobal 
Energy Corp.

Tolhuaca geothermal 
prospect, Chile

dboden@tmcc.edu



Slides in reserve
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Li From Geothermal Brines
• EnergySource 55 MW 

Featherstone Plant
• Produces about 480,000 MWh/yr 

electrical energy 
• Gross annual power revenue $40M–

$45M
• Developing Li recovery plant to yield 

a planned 20,000 tons of LiOH/yr 
planned to begin operating in 2024

• Current price of LiOH has 
skyrocketed to $30k/tongross 
revenue $600M!

• A 100 kWh Tesla battery requires the 
Li content held in 50kg of LiOH

•   Above production of LiOH could 
make 360,000 Tesla batteries/yr

Boden, 2023 41



Boden 2023 42

5 to 50 gpm

(~$58,000/day at 
$90/barrel as of 
09/06/23)

(~$6000 –$12,000/day 
depending on T)

Modified from image courtesy 
of Gene Suemnicht, EGS

20 gpm
650 barrels/day

($40–$400/day)



How is heat transferred?
1. Radiation–transfer of heat 

through space
2. Conduction–transfer of 

heat by contact
• Transfer of heat through solid 

rock
• Slow as rocks are poor 

conductors (good insulators)
• Consistent increasing T with 

depth (geothermal gradient)
3. Convection–transfer of 

heat by motion
• Most efficient
• Critical for exploitable 

geothermal systems
• Will T change much with 

depth?
• No

• Requires good permeability
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Profiles of Drill Temperature with Depth
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Modified from image 
courtesy of Gene 
Suemnicht, EGS

Can you distinguish 
the conductive from 
the convective zones 
of heat transfer in the 
drill hole T with 
depth profiles?

Boiling 
Point 
Curve



Fervo Energy: Blue Mountain EGS 
Project, NV • Successfully drilled 

injection/production well 
doublet (7700 feet vertical 
and 3200 feet lateral legs) 
outside of extant 
hydrothermal system in 
about 6 months

• Stimulated both injection 
and production wells in 
multiple stages to artificially 
create a fracture controlled 
permeable reservoir 

• Pair of wells capable of 
producing 80kg/s of fluid at 
175℃ to 190℃ which yields 
about 5.1 MWe

• Thermal modelling studies 
suggest about a 10 year 
lifespan at the current rate of 
injection and production
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Figure after Fercho et al., 2023



Fervo Energy EGS Project
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X-Section View

1000 ft

• Injection well stimulated in 16 
stages

• Dots are microseismic events 
color coded to the stage of 
stimulation

• Resounding technical success
• Economic success not yet 

(~$12M/MW v. ~$1M/MW)

Figures after Norbeck 
et al., 2023

1000 ft
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