

Keys to Assuring Storage Permanence in Class VI Projects

Susan Hovorka Gulf Coast Carbon Center Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

Groundwater Protection Council 2023 Annual Forum Looking Back, Moving Forward: 40 Years of Advancing Groundwater Protection and Sustainability 9/14/2023 Tampa Florida

TEXAS Geosciences

The University of Texas at Austin Jackson School of Geosciences

Class VI Tools to Assure Storage Permanence

- Models of CO₂ plume
- Model of the AOR
- Monitoring data to confirm correctness of model

How do we use these tools effectively? Answer: Scientific method to test for and prove/disprove consequential missmatches

"All models are wrong but some are useful"

George E.P. Box 1976

 Example: Detailed characterization of flow system at Detailed Study Area Cranfield MS

Hossieni http://dx.doi.org/10.1016/j.ijggc.2012.11.009

- Three wells with good log suites 300 ft apart, two complete cores, surface and cross well seismic
- Of 100 model realizations only 3 matched single phase flow
- None matched CO₂ flow perfectly

Fig. 10. Object modeling approach used to generate three equally likely static facies models conditioned to hard data at well locations: Left to right—DAS wells CFU 31F-1, CFU 31F-2, and CFU 31F-3.

Cranfield plume front maps at early time

(Showing methane tracer concentrations)

AT AUSTIN -

Make model "useful" (per Box) create possible plume front maps of unactable outcomes – risk of plume exceeding AoR

AUSTIN

However observe that one monitoring well is not enough to make a unique history match

Collect targeted monitoring data that systematically reduces risk

change

AT AUSTIN -

Several indicators however can separate cases

General Principal for validation of modeling by monitoring

- Scientific method approach in regulation:
 - Identify the discrepancies that might be consequential to the containment required
 - Design monitoring that will systematically probe for such anomalies (e.g. at 5 years).
 - Report detection of anomaly = need for remedial action
 - No anomaly = finding of conformant performance
 - No need for "perfect" history match

Eliminate need for endless modification of models

• Example from Ketzin CO₂ injection project, Germany 2008-2013

From Ivanova Univ Upsala PhD

The observed unexpected E-W plume elongation is not on the pathway to preakthrough at the area of increased risk

Pressure as model match

- Pressure is diffusive somewhat less effected by reservoir heterogeneity
- Pressure is strongly linked to boundary conditions which are key in correct AoR calculation.
- Sparse far field pressure may be sufficient to de risk AoR

Examples of consequential impacts

- CO₂ plume has "thief zone" or unexpected barrier and expands asymmetrically
- CO₂ plume has lower than expected saturation and expands laterally faster than expected
- CO₂ preferentially accesses only part of the intended storage zone and both pressure and CO₂ plume are larger than expected
- Flaws (open penetrations?) in confining system are present and allow vertical migration of fluids

CO₂ plume meets unexpected barrier and expands asymmetrically

Figure 8: Portion of the injection and pressure data from Snøhvit spanning year 2009 (left), and 4D seismic difference amplitude map of the lowermost Tubåen Fm. level (right)..

Snøhvit saline injection 2009 in Barents sea encountered unexpected lateral barriers to flow pressure rose more quickly than expected. An offset well was drilled to assure continued injection below fracture pressure.

AT AUSTIN -

From Eiken et al, 2011

CO₂ plume has "thief zone" and expands asymmetrically

Figure 3 Growth of the topmost CO_2 layer mapped through difference amplitudes a) 2001 minus 1994 b) 2004 minus 1994 c) 2006 minus 1994. d) 3D perspective view (looking north) of the top Utsira Sand surface (mapped on the baseline 1994 dataset) showing the CO_2 - water contacts in 2001 (red), 2004 (purple and 2006 (blue).

Chadwick et al doi:10.1016/j.egypro.2009.01.274

AT AUSTIN

GEOLOGY

2011 2012 2011 March 2012 September November 2012 2013 March 膏 雪 eferenc (ft) 1:1000 3400 3350 6500 3300 Top Mt Simon 3250 6600 6700 6800 water - personal 3000 6900 2950 2900 7000 Zone 1 Pres (7061) Zone 2 Pres (6983) Zone 3 Pres (6946 Zone 4 Pres (6838' umulative injected mass 1000 x Daily Ave INJ Q, T/h one 5 Pres (6720' Zone 6 Pres (6632' Pulsed neutron saturation logs Pressure response plotted over time Economic

CO₂ preferentially accesses only part of the intended storage zone (are pressure and CO₂ plume are larger than expected?)

1,000,000

900,000

800.000

700,000

600,000

500,000

400,000

300.000

200,000

100.000

Couëslan et al 2014, Decatur

тні

Flaws in confining system are present and allow vertical migration of fluids

 An error in pressure management caused geomechanical damage to a saline CO₂ injection site at In Salah, Algeria and out-of-zone fluid migration, which was detected with INSAR

Rutqvist, 2012 DOI 10.1007/s10706-011-9491-0

Risk assessment method as usual

Scientific Meth	iod Mon	itoring Design
((ALPMI)	

Quantify risl material	ks to define impact	Specify magnit duration, locat of material im	tude, • tion, rate • pact •	Avoid subjective terms like safe a E.g. : Specify mass of leakage at i magnitude of seismicity. Specify certainty with which assu	ind effective. identified horizon o irance is needed
Explicitly model unacceptable outcomes showing leakage cases.	Model materia scenario	l impact os	ALPMI uses m than the typic the expected	ALPMI uses models differently than the typical history matching the expected performance	
	Identify signa or prefer	ls in the earth syst rably precede mate	em that indicate erial impact	This method down selects to co only signals that may indicate m impact is occurring or may	nsider aterial occur.
Approaches like those survey design should b modeling tools	normally seismic e deployed for all	Select monito these signals	ring tools that can d s at required sensiti	Forward modeling tool to developing the expect "No material impact wa system that could detect	response is essentia cted negative findin is detected by a ct this impact."
T Include attribution	his activity as tradition all the expected com n, updating as needed	onally conducted. ponents, such as d, feedback , etc	Deploy tools and ana	alyze data	
	car	Only via this ALPN a finding that the impact did not	ll process e material : occur be	Report if material impact did/did not occur	Clos

impact did not occur be robustly documented

Main points

- Routine matching sparse monitoring data to models is time consuming as well as ineffective in derisking projects
- Recommend: pre-plan monitoring to challenge models where outcomes have consequences. Site specific design with use of basic scientific method to disprove a failure hypothesis.

Thank You! susan.hovorka@beg.utexas.edu gulfcoastcarbon.org University of Texas at Austin

The University of Texas at Austin Jackson School of Geosciences

