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Class VI Tools to Assure Storage

Permanence
» Models of CO, plume

« Model of the AOR

* Monitoring data to confirm correctness of model

How do we use these tools effectively?
Answer: Scientific method to test for and prove/disprove
consequential missmatches
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“All models are wrong but some are useful

George E.P. Box 1976
 Example: Detailed characterization of flow
system at Detailed Study Area Cranfield MS

Hossieni http://dx.doi.org/10.1016/j.ijggc.2012.11.009
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Map of complex fluvial facies

— Three wells with good log suites 300 ft apart, two
complete cores, surface and cross well seismic

— Of 100 model realizations only 3 matched single

Generate multiple equally likely
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Use Morris sampling to select
110 realizations of porosity and
permeability

phase flow

Tune local
permeability

/

Well test data history match-
keep likely models
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Fig. 10. Object modeling approach used to generate three equally likely static facies models conditioned to hard data at well locations: Left to right—DAS wells CFU 31F-1,
CFU 31F-2, and CFU 31F-3.
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Cranfield plume front maps
at early time
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Make model “useful” (per Box) create possible plume front maps
of unactable outcomes — risk of plume exceeding AoR

T

H¥D E8 SnMe 8D 80 Tio 7108 A0 /MO F&Ea IS0 EK b
(o () B
Monitoring well -

T T T L 1 T i
AN REM AW AR &G TOW THAL THW TWW T4 TR OTAM

He (b’

Monitoring well

ool

- — s - — — - T e 1 7
B¥0 E800 SMe G0 280 T Ml0d TLAD /0 F&Ed rI30 B b

la (&) Monitoring well =

T
i 1] A

BMO 4500 EH0 70 TiW T30 T20
o . i 1. -1l - 4. -

8
Tuscaloosa Layer 26 | === | Tuscaloosa Layer 34 nea__amonie

-——r - ' ' - - v -
M adr'd DOSe OMEF DLW O DD 080d

IZ-':I-II G000 ATHF GB00 490 TOO 7000 TN i'!IIIII TaN THO -

%0 E&N 4N0 BHEO E900 TOHE S0 P30 SN0 P80 TR SR
f 1 i i : 1 2 i

0.07
£ | Wy

-

-
[3L1] 45 00 £n) (W) b
R

-——r - ' - v -
M adr'd DOSe OMEF DLW O DD 080d

IZ-':I-II G000 ATHF GB00 490 TOO 7000 TN i'!IIIII L i'll:lil:

n  However observe that one monitoring well is not enough to make a
@mgmcmg Greer unique history match



A B s RMT WK
—— AT AUSTIN —

Collect targeted monitoring data that
systTematlcaIIy reduces risk
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General Principal for validation of modeling
by monitoring
» Scientific method approach in regulation:

— ldentify the discrepancies that might be consequential to the
containment required

— Design monitoring that will systematically probe for such
anomalies (e.g. at 5 years).

— Report detection of anomaly = need for remedial action
— No anomaly = finding of conformant performance
— No need for “perfect” history match




Eliminate need for endless modification of models
« Example from Ketzin CO, injection project, cermany 2008-2013
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Pressure as model match

* Pressure is diffusive - somewhat less effected by
reservoir heterogeneity

* Pressure is strongly linked to boundary conditions
which are key in correct AoR calculation.

« Sparse far field pressure may be sufficient to de risk
AoR

'GOCC s



Examples of consequential impacts

CO, plume has “thief zone™ or unexpected barrier and
expands asymmetrically

CO, plume has lower than expected saturation and
expands laterally faster than expected

CO, preferentially accesses only part of the intended
storage zone and both pressure and CO, plume are
larger than expected

Flaws (open penetrations?) in confining system are
present and allow vertical migration of fluids
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CO, plume meets unexpected barrier and
expands asymmetrically

Fault barrier
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Figure 8: Portion of the injection and pressure data from Snehvit spanning year 2009 (left), and 4D seismic difference amplitude map of the
lowermost Tubden Fm. level (right)..

Snghvit saline injection 2009 in Barents sea encountered unexpected lateral barriers to flow
pressure rose more quickly than expected. An offset well was drilled to assure continued injection
below fracture pressure.
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CO, plume has “thief zone™ and expands
asymmetrically

Figure 3 Growth of the topmost CO; layer mapped through difference amplitudes a) 2001 minus 1994 b) 2004 minus 1994 c) 2006 minus 1994 _ d) 3D C h a d WI C k et a |
perspective view (looking north) of the top Utsira Sand surface (mapped on the baseline 1994 dataset) showing the CO; - water contacts in 2001 (red), 2004

(purple and 2006 (bluc). doi:10.1016/j.egypro.2009.01.274
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September 2011

CO, preferentially accesses only part of the
intended storage zone (are pressure and
i CO, plume are larger than expected?)
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J, plume has lower than expected saturation and expands
laterally larger than expected
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Flaws in confining system are present and allow
vertical migration of fluids

Unwanted mechanical changes

o [mmiy] Localized deformation?

T

— CO, buoyancy
e migration? >y ‘

Horizontal CO2

Fracturing?
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* An error in pressure management caused geomechanical
damage to a saline CO, injection site at In Salah, Algeria and
out-of-zone fluid migration, which was detected with INSAR

Rutqgvist, 2012 DOI 10.1007/s10706-011-9491-0
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Scientific Method Monitoring Design
(ALPMI)

Specify magnitude, * Avoid subjective terms like safe and effective.
material impact duration, location, rate . E.g. : Specify mass of leakage at identified horizon or
of material impact magnitude of seismicity.
. Specify certainty with which assurance is needed
Explicitly model Model material impact ALPMI uses models differently
unacceptable outcomes scenarios than the typical history matching
showing leakage cases. the expected performance

Identify signals in the earth system that indicate ~ This method down selects to consider

or preferably precede material impact only signals that may indicate material
impact is occurring or may occur.

Forward modeling tool response is essential
to developing the expected negative finding:
“No material impact was detected by a

»
.

Approaches like those normally seismic
survey design should be deployed for all
modeling tools

This activity as traditionally conducted.
Include all the expected components, such as
attribution, updating as needed, feedback, etc..

Only via this ALPMI process

can a finding that the material Report if material impact
impact did not occur be did/did not occur

robustly documented
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Main points

* Routine matching sparse monitoring data to models is
time consuming as well as ineffective in derisking

projects
 Recommend: pre-plan monitoring!&ng‘e models

where outcomes have consequences. Site specific design

with use of basic scientific method to disproveiafailurey

hypothesis.
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