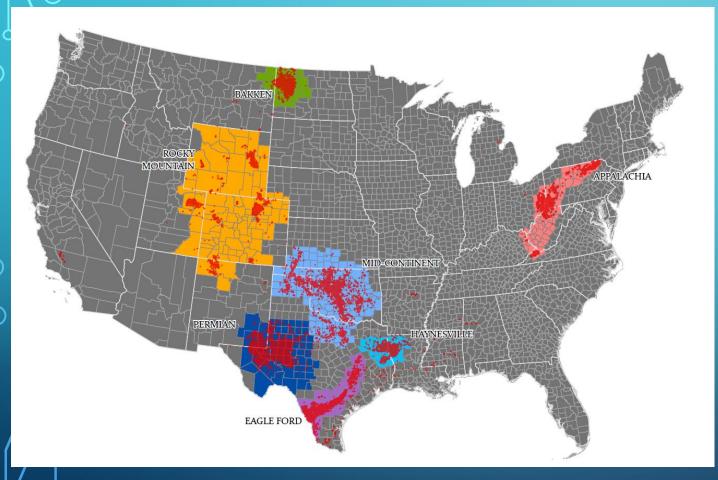
GWPC Produced Water Report – Update 2023

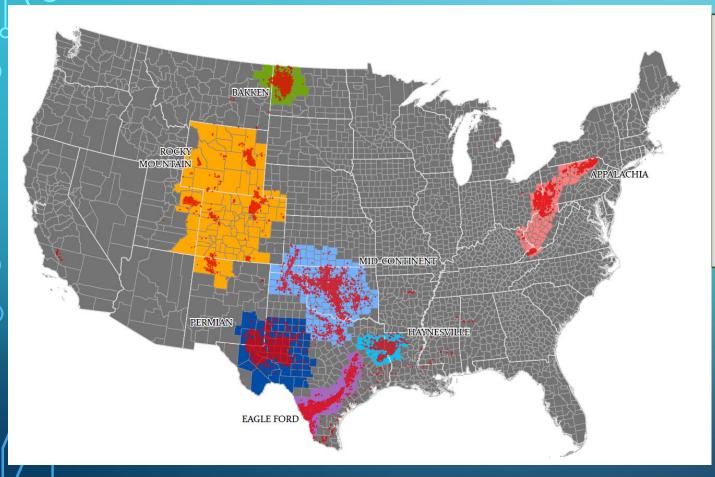
Mark Kidder / ALL Consulting

September 13, 2023

UPDATED GWPC DOCUMENT: PRODUCED WATER REPORT – UPDATE 2023


PRODUCED WATER REPORT

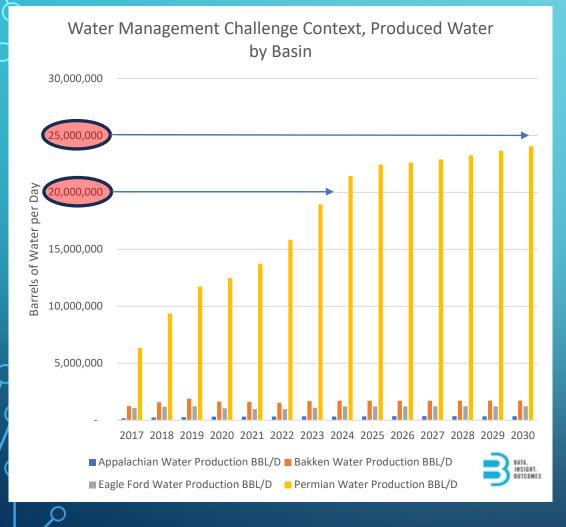
Regulations & Practices Updates


- Focused Solely on Key Updates
 - ~100 pages
 - Legislative and Regulatory
 - Produced Water Operational and Management Practices
 - Produced Water Reuse Technologies and Associated Research Needs

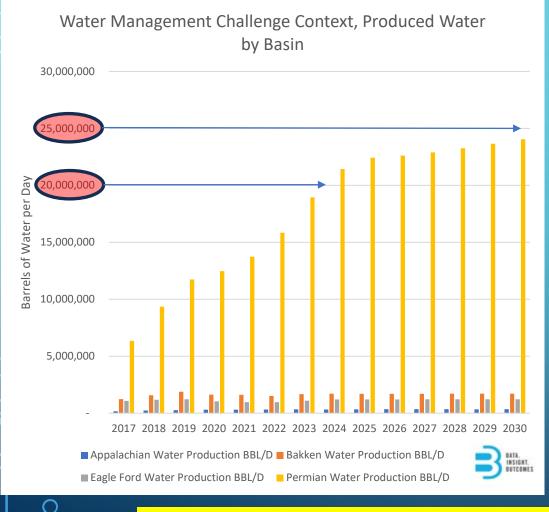
CONTINUED FOCUS: TOP 7 OIL AND GAS DEVELOPMENT REGIONS

- Permian (Including Midland and Delaware Basins) – TX, Southeast NM
- 2. Eagle Ford TX (includes S. Texas)
- **3. Appalachian** (Including Utica and Marcellus Basins) PA, OH, WV
- 4. Bakken ND, MT
- 5. Mid-Continent OK, Southern KS, North Texas
- 6. Rocky Mountain– CO/WY, UT, Northwest NM
- 7. Haynesville AR/LA/Northeast TX

CONTINUED FOCUS: TOP 7 OIL AND GAS DEVELOPMENT REGIONS



- Permian (Including Midland and Delaware Basins) – TX, Southeast NM
- 2. Eagle Ford TX (includes S. Texas)
- **3. Appalachian** (Including Utica and Marcellus Basins) PA, OH, WV
- 4. Bakken ND, MT
- 5. Mid-Continent OK, Southern KS, North Texas
- 6. Rocky Mountain– CO/WY, UT, Northwest NM
- **7. Haynesville** AR/LA/Northeast TX



KEY DISCUSSION POINTS / FINDINGS

- Permian Emerges as Focal Point of PW
 - Of 7 Largest O&G Dev. Regions
 - **#1** U.S. in Oil Production (>50% of US Production)
 - **#1** Produced Water Volumes /Challenges
- Focus 3 Key Discussion Points
 - Induced Seismicity Greatest Risk to E&P Growth
 - PW Recycling (Completions)
 - Highlight: Treatment Spec Emerging
 - PW Reuse (Beneficial)
 - Highlight High Salinity Desalination
 - Practical Limits on Disposal of Highly Concentrated Brine

- **CURRENT:** Permian current produced water volumes generated are:
 - 11x > Bakken
 - 16x > Eagle Ford
 - 49x > Appalachian
- **BY 2030:** Permian expected to outpace these basins even further:
 - 14x > Bakken
 - 20x > Eagle Ford
 - 69x > Appalachian
- Permian: Currently Approaching Practical Injection Volume Capacity

- **CURRENT:** Permian current produced water volumes generated are:
 - 11x > Bakken
 - 16x > Eagle Ford
 - 49x > Appalachian
- **BY 2030:** Permian expected to outpace these basins even further:
 - 14x > Bakken
 - 20x > Eagle Ford
 - 69x > Appalachian
- Permian: Currently Approaching Practical Injection Volume Capacity

SOLUTION: More Injection Capacity Required / More SWD's!

INDUCED SEISMICITY GREATEST RISK TO PERMIAN E&P GROWTH

Significant Increases in Induced Seismic Events

- Reducing Injection Volume in High-Risk Areas
- Regulatory Agencies (NM/TX) Want More Seismic Monitoring

Compels the Question....

• EVER WONDER Why?

Frac-ing with 100,000's bbls of water... pumped at >8,000 psi... over a few days... is RARELY directly connected to induced seismicity?

- Largely because of monitoring and mitigation!
- Frac crews intensely measure for microseismic events
- When events become problematic, frac crews reduce pressures
- Frac companies driving advances microseismic technology

INDUCED SEISMICITY GREATEST RISK TO PERMIAN E&P GROWTH

Significant Increases in Induced Seismic Events

- Reducing Injection Volume in High-Risk Areas
- Regulatory Agencies (NM/TX) Want More Seismic Monitoring

Compels the Question....

• EVER WONDER Why?

Frac-ing with 100,000's bbls of water... pumped at >8,000 psi... over a few days... is RARELY directly connected to induced seismicity?

- Largely because of monitoring and mitigation!
- Frac crews intensely measure for microseismic events
- When events become problematic, frac crews reduce pressures
- Frac companies driving advances microseismic technology

SOLUTION: Inject Less PW (Reduce Pressure) / Increase PW Recycling / Reuse!

GREATER RECYCLING OF PW - COMPLETIONS IMMEDIATE FOCUS: REDUCE INJECTION VOLUMES BY

Completions – Min. Quality Expectations of PW - Key Parameters:

- TSS
- **CLARIFICATION:** Prominent Practices **Physical**: Settling / Separation **Mechanical/Physical/Chemical**: • TOG DAF

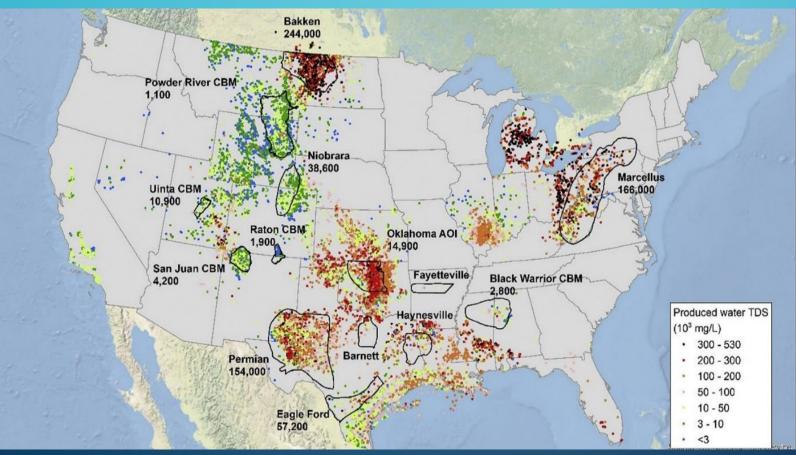
- H2S
- Total Iron
- Bacteria

OXIDATION: Prominent Practices

Physical: Aeration **Chemical:** H₂O₂, Bleach (NaClO), Ozone Key Performance Measurements:

- ORP (determines oxidation efficiency/residual)
- ATP (Bacteria)*

RECYCLED PW – COMMON TREATMENT SPEC EMERGING!


		High-Spec Treatment	Mid-Spec Treatment	Low-Spec Treatment
TOG	mg/L	< 10	< 30	< 100
TSS	mg/L	< 50	< 200	< 1,000
Total Fe	mg/L	< 5	< 10	n/a
H ₂ S	mg/L	ND	ND	ND
ORP	mv	> 300	> 150	> 0
рН	n/a	6-8	6-8	6-8
Bacteria/ ATP	pg/ml	< 50	< 100	< 500
		Oil/water separation	Oil/water separation	Oil/water separation
Typical processe	s	Aggressive oxidation	Mild oxidation	Minimum oxidation
		 Filtration and/or flocculation 	Solid settlement	 Specific process tailored to the needs

RECYCLED PW – COMMON TREATMENT SPEC EMERGING!

		High-Spec Treatment	Mid-Spec Treatment	Low-Spec Treatment
TOG	mg/L	< 10	< 30	< 100
TSS	mg/L	< 50	< 200	< 1,000
Total Fe	mg/L	< 5	< 10	n/a
H ₂ S	mg/L	ND	ND	ND
ORP	mv	> 300	> 150	>0
рН	n/a	6-8	6-8	6-8
Bacteria/ ATP	pg/ml	< 50	< 100	< 500
		Oil/water separation	Oil/water separation	Oil/water separation
Typical processes		Aggressive oxidation	Mild oxidation	Minimum oxidation
		 Filtration and/or flocculation 	Solid settlement	 Specific process tailored to the needs

- Most Challenging PW Treatment Goal? Keeping a positive ORP (>0) before used at next frac
- Driver for intensity of oxidation (ORP) Levels?
 <u>EXPECTED STORAGE TIME</u> of PW between fracs = greater residual ORP – constantly decreasing target based on storage times

PW REUSE – CHALLENGE COMPOUNDED BY HIGH TDS AND INLAND LOCATION

Average TDS Per Basin 3 Areas with TDS > 6 figures

- Bakken 244,000 ppm
- Marcellus 166,000 ppm
- Permian <u>154,000 ppm</u>

PW FOR BENEFICIAL REUSE – CHALLENGE COMPOUNDED BY HIGH TDS AND INLAND LOCATION

Why is desalination so challenging in the Permian?

- <u>High TDS</u> >40,000 ppm No RO
 - Permian 154,000 ppm
 - Limits treatment options Distillation
- Inland Location Limits Disposal Options
 - Most desalination facilities Coastline placement
 - Source of water to treat = the disposal zone
 - Concentrated brine back pumped back into the sea
 - Inland Desalination Locations 2 Disposal Options
 - Injection wells
 - Crystallization

THE OPTIMAL BENEFICIAL REUSE SCENARIO: CREATE FRESH WATER + DISPOSE OF CONCENTRATED BRINE IN SWDS

ANALYSIS:

Establish FW Treatment Levels and Maximum Brine Concentration (TDS)
FW Treatment Level = 500 ppm TDS (Max)
Authorities accept 500 ppm as max TDS concentration for "fresh water"
Tap water – 350 ppm avg
Concentrated Brine Treatment Level for Ongoing Disposal:
Max. Acceptable Limit Identified: 260,000 ppm TDS*
Concentration slightly below the Spontaneous Nucleation Point (SNP)

SNP – Solids begin to form

Fresh Water Recovery / Disposal Volume Reduction Ratios

Incoming Water TDS (ppm)	Incoming Volume (bbl)	Heavy Brine Volume (bbl) at 260,000 ppm	Distillate Volume Recovered (bbl) at <500 ppm	Percent Distillate (Fresh) Water Recovered
100,000	16,250	6,250	10,000	61.54%
110,000	17,333	7,333	10,000	57.69%
120,000	18,571	8,571	10,000	53.85%
130,000	20,000	10,000	10,000	50.00%
140,000	21,667	11,667	10,000	46.15%
150,000	23,636	13,636	10,000	42.31%
160,000	26,000	16,000	10,000	38.46%
170,000	28,889	18,889	10,000	34.62%
180,000	32,500	22,500	10,000	30.77%
190,000	37,143	27,143	10,000	26.92%
200,000	43,333	33,333	10,000	23.08%
lote: Heavy brine is concentrated to 260,000 ppm TDS, and distillate is <500 ppm TDS				

Figure 60: Expected Water Recovery and Waste Brine Volumes from High Salinity PW¹¹⁴

VAPOR DISTILLATION

Fresh Water Recovery / Disposal Volume Reduction Ratios

Incoming Water TDS	Incoming Volume	Heavy Brine Volume (bbl) at	Distillate Volume Recovered (bbl) at	Percent Distillate (Fresh) Water
(ppm)	(bbl)	260,000 ppm	<500 ppm	Recovered
100,000	16,250	6,250	10,000	61.54%
110,000	17,333	7,333	10,000	57.69%
120,000	18,571	8,571	10,000	53.85%
130,000	20,000	10,000	10,000	50.00%
140,000	21,667	11,667	10,000	46.15%
150,000	23,636	13,636	10,000	42.31%
160,000	26,000	16,000	10,000	38.46%
170,000	28,889	18,889	10,000	34.62%
180,000	32,500	22,500	10,000	30.77%
190,000	37,143	27,143	10,000	26.92%
200,000	43,333	33,333	10,000	23.08%
lote: Heavy brine is concentrated to 260,000 ppm TDS, and distillate is <500 ppm TDS.				

Figure 60: Expected Water Recovery and Waste Brine Volumes from High Salinity PW¹¹⁴

VAPOR DISTILLATION

At 155,000 ppm TDS PW (Permian Avg)

Incoming PW Volume 25,000 bbls

Post Treatment Results: ~40% FW Recovery 40% (10,000 bbls) fresh water 60% (15,000 bbls) conc. brine

Not so much a TREATMENT limitation But.. Primarily a PHYSICAL limitation imposed for SWD's to stay below SNP.

Fresh Water Recovery / Disposal Volume Reduction Ratios

Incoming Water TDS	Incoming Volume	Heavy Brine Volume (bbl) at	Distillate Volume Recovered (bbl) at	Percent Distillate (Fresh) Water
(ppm)	(bbl)	260,000 ppm	<500 ppm	Recovered
100,000	16,250	6,250	10,000	61.54%
110,000	17,333	7,333	10,000	57.69%
120,000	18,571	8,571	10,000	53.85%
130,000	20,000	10,000	10,000	50.00%
140,000	21,667	11,667	10,000	46.15%
150,000	23,636	13,636	10,000	42.31%
160,000	26,000	16,000	10,000	38.46%
170,000	28,889	18,889	10,000	34.62%
180,000	32,500	22,500	10,000	30.77%
190,000	37,143	27,143	10,000	26.92%
200,000	43,333	33,333	10,000	23.08%
ote: Heavy brine is concentrated to 260,000 ppm TDS, and distillate is <500 ppm TDS.				

Figure 60: Expected Water Recovery and Waste Brine Volumes from High Salinity PW¹¹⁴

VAPOR DISTILLATION

PROS:Reduce Disposal Volumes

CONS:

 TDS at 260K increases bottomhole *pressure* gradient by ~0.09 psi/ft

Final Observations

- PRODUCED WATER: Eyes of the World On the Permian: Lessons Learned Far Reaching!
- Current Industry Focus: 1 2 PUNCH MAXIMIZE
 - #1 <u>RECYCLING</u> (for Completions)
 - BIGGEST LIMITATION: Max ~ 7MM BWPD Total Demand / Trending 1 to 50% Recycled (Achievable)
 - #2 <u>REUSE</u> (Beneficial)
 - **BIGGEST LIMITATION:**
 - PHYSICAL LIMITATION: 40% Recovery / 60% Disposal
 - Even w/ MAJOR Expansion
 - Treat 1 MM BWPD = <u>TWENTY TREATMENT FACILITIES</u> that treat 50K BWPD Each
 - Overall Reduction in Disposal Volume = 400K BWPD / Systemwide Inj. Volume of 20MM BWPD
 - Reduces Injection Volume by Only 2% (Minimal Impact)
 - Practical Reality Years Away

For Permian Expansion to Continue – Need MORE Injection Capacity / SWD's

Increased Risk of Induced Seismicity *seems inevitable*

Final Observations

- PRODUCED WATER: Eyes of the World On the Permian: Lessons Learned Far Reaching!
- Current Industry Focus: 1 2 PUNCH MAXIMIZE
 - #1 <u>RECYCLING</u> (for Completions)
 - BIGGEST LIMITATION: Max ~ 7MM BWPD Total Demand / Trending 1 to 50% Recycled (Achievable)
 - #2 <u>REUSE</u> (Beneficial)
 - **BIGGEST LIMITATION:**
 - PHYSICAL LIMITATION: 40% Recovery / 60% Disposal
 - Even w/ MAJOR Expansion
 - Treat 1 MM BWPD = <u>TWENTY TREATMENT FACILITIES</u> that treat 50K BWPD Each
 - Overall Reduction in Disposal Volume = 400K BWPD / Systemwide Inj. Volume of 20MM BWPD
 - Reduces Injection Volume by Only 2% (Minimal Impact)
 - Practical Reality Years Away

For Permian Expansion to Continue – Need MORE Injection Capacity / SWD's

Increased Risk of Induced Seismicity *seems inevitable*

WHAT ELSE CAN THE INDUSTRY DO <u>NOW</u> TO BE PROACTIVE?

1-2-**3** Punch

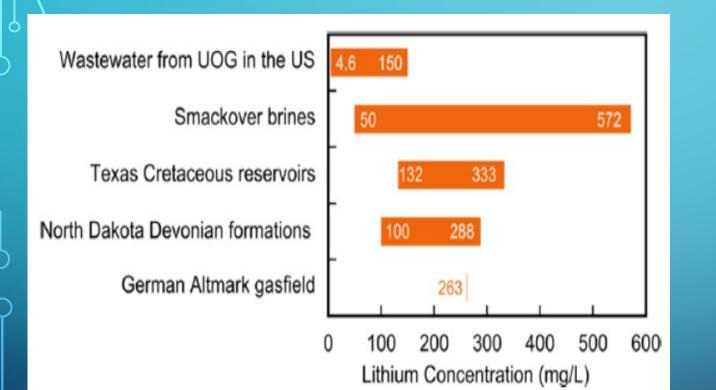
#3 Proactively Expand Seismic Monitoring System

- Most practical present oppty Measure/Manage/Mitigate Induced Seismicity
 - Focus on SRAs and Expand Outward
 - Learn from Frac Crews
 - Where microseismic trends upward, dial back pressure
 - Establishes Baseline in Microseismic Activity
 - For PW Allows for Active Management
 - Divert Volumes / *Pressure* to other areas
 - Before larger events occur!
 - Opportunity For Industry/Consortiums/Service Providers/Legislators
 - PROACTIVE To mitigate the biggest risk to the Permian's future

GWPC Produced Water Report – Update 2023 Mark Kidder / ALL Consulting

For Full Report - www.GWPC.org

Key Contributors - <u>SPECIAL THANKS TO</u>:


Groundwater Protection Council (GWPC) Maggi Young – Chesapeake Energy Rick McCurdy – Select Energy Services Kelly Bennett and Pat Patton – B3 Insight Apoorva Sharma – Crystal Clearwater Resources Zac Sadow – KMX Technologies Markus Drouven: PARETO

EXTRA SLIDES

0

Lithium Extraction Opportunity

Lithium Chloride Concentrations in Produced Water

- Current Extraction
 Technologies Economic
 Viability Requires
 - Adequate Volumes of Water
 - Lithium Chloride <a>>100ppm
 - LiCl concentration in the Permian
 - Averages <u>20-40 ppm</u>