A New Tool for Quantifying Impacts to Hydro-Economic Well Performance

Justin C. Thompson, Ph.D.

Groundwater Protection Council Annual Forum Environmental Data Management

September 14, 2023

The University of Texas at Austin Jackson School of Geosciences

MOTIVATION

Depth-to-water (DTW) is increasing...

- What are the impacts?
- How can impacts be remediated? Mitigated?

"America Is Using Up Its Groundwater Like There's No Tomorrow" New York Times, August 28, 2023

Analytically quantifying changes in hydro-economic well performance

1. Operational

Available head **declines** with increasing DTW

Can the well meet pumping demand without failing?

Remediation?

Threshold: Operational Failure

2. Economic

Costs **rise** with increasing DTW

How do pumping costs change? Are they affordable?

Remediation costs?

Threshold: Costs = Willingness-to-Pay

Pumping Drawdown

- Specific Capacity (Gailey et al. 2019, 2022; Thompson et al. 2020)
- Theis[†] = $\frac{Q}{4\pi T} \int_u^\infty \frac{e^{-y}}{y} dy$ $u = \frac{r^2(S)}{4Tt}$
- $Hantush^{\dagger\dagger} = \frac{Q}{2\pi T} \frac{2b}{\pi d} \sum_{n=1}^{\infty} \frac{1}{n} \left[sin\left(\frac{n\pi a}{b}\right) sin\left(\frac{n\pi c}{b}\right) \right] cos\left(\frac{n\pi z}{b}\right) K_o\left(\frac{n\pi r\left(\frac{Kz}{Kx}\right)}{b}\right)$

Cost Components

• Lifting Energy =
$$\left(\sum_{n=1}^{\max t} \frac{(DTW+s) Q 745.7 P_p}{3960 E}\right) \div Q t$$

- Pump Equipment = $\frac{(DTW + \max s) Q P_u}{3960 E L_u Q t}$
- Drilling and Installation = $\frac{P_d D}{L_w Q t}$

Remediation Costs

- Setting deeper pumps (service cost)
- Installing more powerful pumps (equipment cost)
- Well deepening (*drilling cost*)
- New wells (drilling cost)

CASE STUDY

Carrizo-Wilcox Aquifer Post Oak Savannah Groundwater Conservation District

CASE STUDY

BUREAU OF ECONOMIC GEOLOGY

Post Oak Savannah GCD

- High storage, varied conditions
- 2010 2070 : 50% to 109% increase in DTW
- Vista Ridge Project
- Groundwater Well Assistance Program

	Carrizo Formation	Calvert Bluff Formation	Simsboro Formation	Hooper Formation
Plan	+146 ft	+156 ft	+278 ft	+178 ft
2010 DTW	292 ft	302 ft	256 ft	305 ft
2070 DTW	438 ft	458 ft	534 ft	483 ft
DTW Change	+50%	+52%	+109%	+58%

Post Oak Savannah Groundwater Conservation District

Model-optimized wells, agricultural use, 2010 DTW

Model-optimized wells, agricultural use

Simsboro Formation

503 existing domestic, livestock, and irrigation wells

34% of Wells Operationally Fail Remediation: 82% pump drop, 18% deepening

503 existing domestic, livestock, and irrigation wells

503 Domestic, Livestock & Irrigation Wells 45% Cost Increase (\$1,390,580) \$85,800 \$396,000 \$283,750 \$625,036 Drilling Equipment Lifting Service

2070 DTW Operational Threshold Operational DTW Threshold [ft] 0 16 - 65 66 - 99 0 100 - 120 O 130 - 130 0 140 - 140 O 150 - 160 O 170 - 170 O 180 - 180 O 190 - 190 O 200 - 200 O 210 - 210 0 220 - 220 0 230 - 230 0 240 - 240 250 - 260 270 - 300 310 - 350 360 - 430 440 - 610 620 - 1200 75t ft.

445 existing domestic wells

- EPA affordability = 2.5% income
- Income data by census tract
- 99% of domestic wells affordable by MHI but...
- Disproportionate impacts to low-income populations

2010 DTW 2070 DTW • Study Area Population

KEY TAKEAWAYS

KEY TAKEAWAYS

New Tool

- Quantifying changes in hydro-economic well performance
- Drawdown as a key driver of performance
- Operational and affordability DTW thresholds and yields
- Cost impacts (by type over period, annual, or volume)
- Optimization solutions for well infrastructure
 - Least-cost remediation options
 - Maximized performance thresholds

ACKNOWLEDGEMENTS

Coauthors: Michael H. Young and Charles W. Kreitler

BEG Excellence Fund for Water Research and Policy

Thank you for listening!

Questions?

justin.thompson@beg.utexas.edu (512) 471-0217

[Pecos River, Val Verde County, J.C. Thompson]