Managed aquifer recharge utilizing riverbank filtration and groundwater transfer and injection for sustainable groundwater-irrigated agroecosystems in the Mississippi Delta

by

Andy O'Reilly

Daniel Wren, Martin Locke, William B. Rossell | USDA Agricultural Research Service,
National Sedimentation Laboratory

June E. Mirecki | U.S. Army Corps of Engineers, Jacksonville District

Groundwriter Protection Council
Innual Popular Uniderground Injection Control Conterence

21 22 hine 2020

Partnerships

USDA ARS – Research lead and fundingU.S. Army Corps of Engineers – Design and construction

- Delta Council
- Delta Farmers Advocating Resource Management
- Mississippi Department of Environmental Quality
- Mississippi Farm Bureau Federation
- Mississippi Soil and Water Conservation Commission
- USDA Natural Resources Conservation Service
- U.S. Geological Survey
- Yazoo Mississippi Delta Joint Water Management District

Why Sustainable Aquifer Management?

- Sustainable groundwater is a prerequisite for sustainable development
- Managed Aquifer Recharge (MAR) technology can support sustainable management of aquifers

Figure 1. Percentage of groundwater-related targets per SDG

SOURCE: Guppy, L., Uyttendaele, P., Villholth, K. G., Smakhtin, V. 2018. *Groundwater and Sustainable Development Goals: Analysis Of Interlinkages*. UNU-INWEH Report Series, Issue 04. United Nations University Institute for Water, Environment and Health, Hamilton, Canada.

Second highest GW withdrawals in the United States

- The Mississippi River Valley alluvial aquifer (MRVAA) had the second highest groundwater withdrawals of any principal aquifer in the U.S. of 12.1 Bgal/day
- ➤ In the humid southeastern U.S, we get a lot of rain still can have imbalances between aquifer inflows (recharge) and natural outflows and pumpage

THE MISSISSIPPI DELTA...

Source: https://www.bbking.com/gallery/

- > Birthplace of the blues and other uniquely American musical genres
- Extreme hardship due to the history and enduring legacy of slavery, sharecropping, segregation, and racism and the unpredictability of the Mississippi River itself
- ➤ Major producer of food, fuel, and fiber products, yet many communities are suffering from pervasive and long-term economic depression
- ➤ Increased water security thorough sustainable management of the MRVAA would support a sustainable agroecosystem and economic opportunity in the Delta

Complex hydrogeology of MRVAA

- Surficial aquifer system,20 to 200 ft thick
- Semi-confined by surficial layer of silt and clay
- Permeable zones consist of coarse sand and gravels

Source: Arthur, J.K., 1994, Thickness of the upper and lower confining units of the Mississippi River alluvial aquifer in northwestern Mississippi: USGS WRIR 94-4172

(The Delta) STUDY **AREA** Mississippi Project area Legend 20 Year Net Change & YMD

Source: YMD Joint Water Management District, 2014 Water Level Survey

Mississippi Delta – A groundwater-irrigated agroecosystem under stress

- ➤ 3,000 → 21,000 irrigation wells from 1980's to today
- ➤ 3.3 Million ac-ft of GW loss within the cone of depression from 1987 to 2009
- Aquifer injection and storage identified as a MAR technology to potentially reverse groundwater depletion

Groundwater Transfer and Injection Pilot Project

- 1) Extract
 groundwater of
 improved quality
 via riverbank
 filtration
- 2) *Transfer* water to area of greater groundwater depletion
- 3) *Inject* water into aquifer storage
- 4) Withdraw groundwater as needed using existing infrastructure

Project objectives

- Pilot facility to assess feasibility
- Identify sustainable injection rate and O&M requirements
- Is this a viable path toward sustainability in the region?

Extensive soybean and corn fields surrounding injection well site (looking south)

System configuration

Backflush discharge into Lake Henry

Extraction and Injection sites at Shellmound, Mississippi

System characteristics

- > \$1.9 million construction costs
- ➤ One extraction well with variable frequency drive (up to 1,500 gpm)
- ➤ Two injection wells, each with permitted capacity 750 gpm
- > 16-inch diameter wells
 - Extraction well: 63–113 ft depth of withdrawal
 - Injection wells: 80–120 ft depth of injection
- ➤ Submersible pumps in both injection wells for backwash (1,200 gpm)

Operational tests

- ➤ <u>Initial 3-month test</u>:
 - April 14 July 12, 2021
 - Injected total of 550 ac-ft
 - Average injection rate 730 gpm/well (total 2.1 MGD; minimum daily mean river flow is 378 MGD)
 - Well clogging, leaks, and rehabilitation

- \triangleright 2nd test period:
 - Started February 8, 2022
 - Injected total of 420 ac-ft (by June 16)
 - Average injection rate 1,150 gpm; alternating wells (600 gpm/well) began May 13
 - Backflush twice per week to minimize well clogging

Some challenges...

- ➤ Natural *high iron concentrations*
 - Fouling of sensors by iron precipitation
 - Biofouling of injection wells
 - Discharge of backflush water to Lake Henry exceeds 1 mg/L total iron limit in NPDES permit

- Sand boils and leakage of injected water at land surface
- Sinkhole at extraction well and decreasing specific capacity possibly due to well sanding

Sand boils and well rehabilitation

- ➤ Most-permeable injection zones *clogged* with iron bacteria causing *increased pore-water pressure*
- > Exceeded buoyant weight of overburden
- ➤ USACE conducted *oxalic acid rehabilitation* of both injection wells Sept. 22–28
- ➤ Specific capacity returned to ~90% of initial value (~40–50 gpm/ft, May 2021); now ~110–120% of initial value

Injection Well B before rehab

Injection Well B after rehab

Airborne electromagnetic geophysical survey shows complex geological heterogeneity

- Variations in lithology likely contributed to soil piping at injection wells (& extraction well)
- Higher resistivity (yellow and warmer colors) are more sandy texture sediments
- Heterogeneity a key control on groundwater flow and quality

Source: Burton, B.L., Minsley, B.J., Bloss, B.R., Rigby, J.R., Kress, W.H., and Smith, B.D., 2019, Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018: U.S. Geological Survey data release, https://doi.org/10.5066/P9D4EA9W
GWPC, 22 June 2022 | A.M. O'Reilly, USDA-ARS

Monitoring of water quantity and quality

- > 17 Observation wells
- ➤ All wells (including extraction and injection wells) continuous (hourly) groundwater level
- ➤ 6 wells *semi-monthly field water quality* (temperature, specific conductance, pH, DO)
- ➤ All wells *monthly lab water quality* by USACE ERDC lab in Vicksburg, MS
- Other water quality sampling: Tallahatchie River, injection well backflush, Lake Henry (backflush impact)

Groundwater levels vary by season, withdrawals, and injection

Water level impacts larger from injection than extraction

 Water level change 54 days into Injection Period 1 (June 7)

Groundwater mound up to 7 ft high

 Groundwater depression up to 5 ft deep

 Depression smaller than mound likely due in part to recharge by river water

Aquifer recharge by river leakage

- Water quality field measurements indicate
 - Lower specific conductance near the river compared to injection site
 - Strong seasonal pattern
 in groundwater
 temperature at well OW06
 nearest river
- Consistent with leakage of less mineralized river water into aquifer

Water quality changes during riverbank filtration

- ➢ River oxic → Groundwater suboxic: DO 6+ (river) and <0.3 mg/L (well)</p>
- ➤ 10x decrease in TSS concentration likely filtration
- Loss of Nitrate may be due to denitrification, or increased NH₄⁺ suggests ammonification (DNRA)
- Loss of TOC likely filtration and biogeochemical oxidation
- ➤ Increases in nearly all other analytes mineralization likely caused by rock-water interaction and biogeochemical processes

May sampling event

▼ Ext & Inj wells: Median & Minimum-Maximum range
 ■ Tallahatchie River

Groundwater quality before and after first injection period

- High Iron concentration naturally occurring – may support bacterial growth and iron mineral formation
- Low Arsenic concentration.
 USEPA drinking water limit
 0.01 mg/L
- Overall, small changes in MRVAA water quality on average

March and November sampling events
Observation wells: Median & Minimum-Maximum range

Different changes in mineral and nutrient content of groundwater at extraction vs. injection sites

- Change from March (pre-operation) to November 2021
- Compare observation wells nearest the extraction and injection wells and screened at similar depths
 - TDS increases at extraction and decrease at injection
 - Nutrients (TKN, NH₄⁺, TOC)
 decrease at extraction and
 increase at injection

Current Status and Future Work

- Complete Injection Period #2 for a duration of up 6 months
- Determine best O&M practices for safe injection rate and backflush frequency
- Assess environmental and hydrological sustainability of the technology
 - Regional modeling USGS
 - Local-scale modeling, Hydrogeology, and Geochemistry – USDA-ARS and Univ. of Mississippi
- Assess technical and economic feasibility of a larger scale implementation

