THE ASCE/EWRI STANDARD GUIDELINES FOR MANAGED AQUIFER RECHARGE

Gordon McCurry, PhD, PG McCurry Hydrology, LLC

Ground Water Protection Council 2022 Annual & UIC Conference June 22, 2023

OUTLINE

- Development of the Standard
- Overview of the Standard

WHAT IS MANAGED AQUIFER RECHARGE?

- It is the <u>intentional</u> recharge of water to aquifers for subsequent use or for environmental benefit
- Does not include incidental or unmanaged recharge
 leaky pipes
 - stormwater runoff
 - septic system leach fields
- MAR involves the planning, design, construction, and O&M for both water quantity and quality

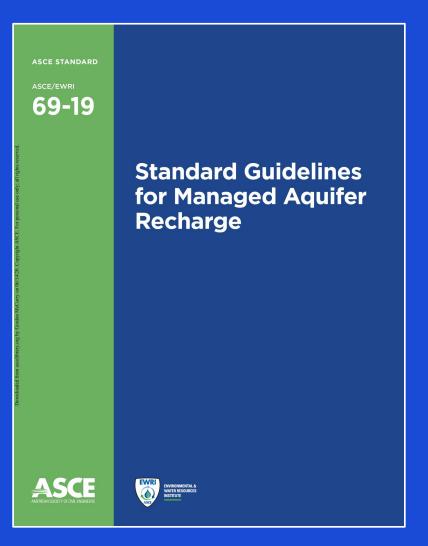
WHY ARE MAR GUIDELINES NEEDED?

- Provides a comprehensive resource of information for those new to MAR
- Provides a standard process for all steps needed to develop a successful MAR project
- Provides guidance on potential problems so they can be managed before full scale operation

ASCE/EWRI PUBLICATION PROCESS

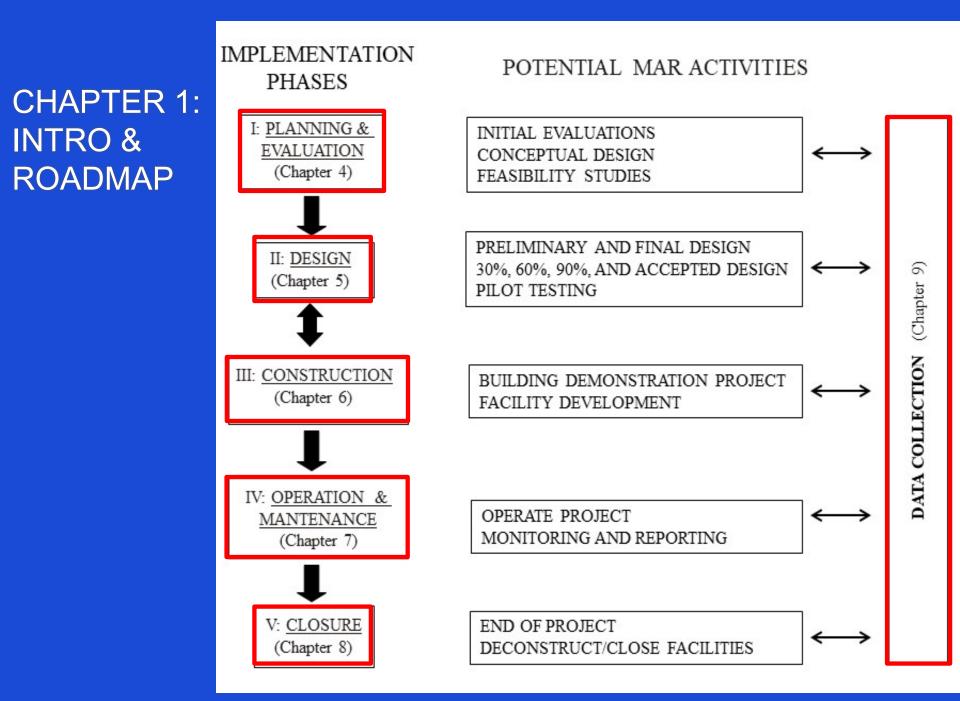
- A Committee was formed with volunteers approved by the ASCE Codes and Standards Committee
- Committee goal was to review and update the 2001 ASCE Standard Guidelines for Artificial Recharge
- Individual chapters developed independently by subgroups and balloted by the full Committee
- Chapters were revised & re-balloted until approved
- ASCE public comment on the draft Standard
- ASCE Codes and Standard Committee reviewed and approved the document for publication

MAR GUIDELINES SUBCOMMITTEE

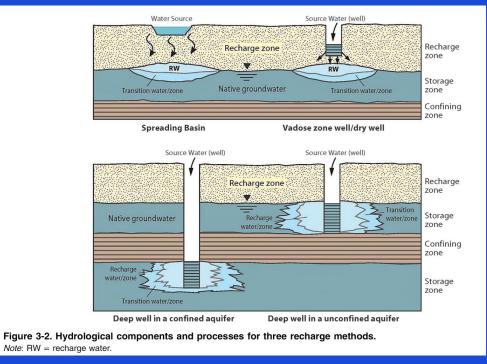

Dr. Gordon McCurry Mr. Peter Barkmann Ms. Phyllis Stanin Mr. Ben Willardson Dr. Zhuping Sheng Mr. Douglas Bartlett Mr. Dennis McGrane Mr. Peter Dillon Ms. Stephanie Moore Mr. Adam Hutchinson Mr. Greg Woodside Mr. Cortney Brand Mr. Devin Galloway Mr. David Pyne

Editor, Co-Chair Co-Chair Secretary Past-Chair Member Member Member Member Member Member Member Member Member Member

McCurry Hydrology, LLC, Boulder, CO Colorado Geological Survey, Denver, CO Todd Engineers, Emeryville, CA Hydrology Consulting Engineer, Payson, UT Texas A&M University, El Paso, TX Clear Creek Associates, Scottsdale, AZ McGrane Water Engineering LLC, CO CSIRO, Australia Daniel B. Stephens and Associates, Austin, TX Orange County Water Dist, Fountain Valley, CA Orange County Water Dist, Fountain Valley, CA Leonard Rice Engineers, Denver, CO USGS, Sacramento, CA ASR Systems LLC, Gainesville, FL

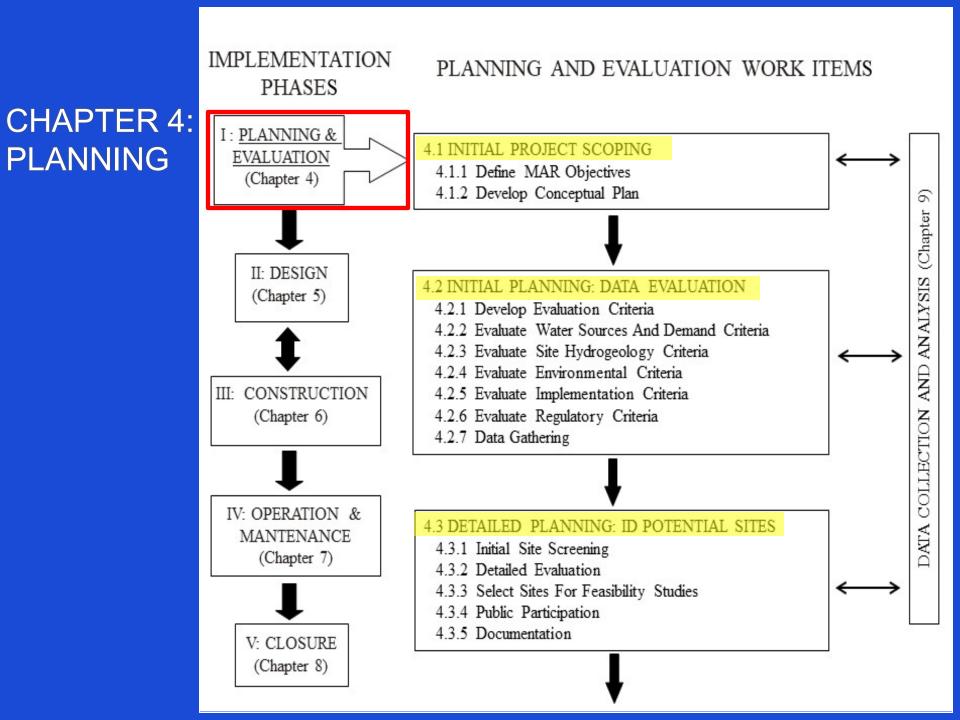

THE RESULT: MAR STANDARD GUIDELINES

- Includes background information and the full range of activities for MAR projects
- Includes case studies illustrating key steps in MAR development
- Published in May 2020 as ASCE/EWRI Standard Guideline 69-19



OVERVIEW OF THE MAR GUIDELINES

- 1. Introduction
- 2. Groundwater Fundamentals and Occurrence
- 3. Managed Aquifer Recharge Concepts
- 4. Planning
- 5. Design
- 6. Construction
- 7. Operations and Maintenance
- 8. Closure
- Data Collection and Analysis
 Appendices



CHAPTER 3: MAR CONCEPTS

Table 3-1. Major Characteristics of Aquifer Recharge Methodologies.

Parameter	Surface Infiltration	Vadose Zone Injection	Subsurface Injection
Facility type	Recharge basins	Vadose zone wells	Recharge wells
Aquifer type	Unconfined	Unconfined	Unconfined or confined
Pretreatment requirements	Low/minimal technology	Prevention of clogging and biofouling	Prevention of clogging and biofouling
Estimated major capital costs	Low to high (depending on local land values)	Low to medium	Medium to high
Capacity	1,000–20,000 [°] m ³ /ha/day	1,000–3,000 m ³ /day per well	2,000–15,000 m ³ /day per well
Maintenance requirements	Drying and scraping	Drying and disinfection	Disinfection and backflushing
Estimated lifecycle	>100 years	5–20 years	25–50 years
Location of aquifer-water contact	Vadose zone and saturated zone	Vadose zone and saturated zone	Saturated zone

Table 4-1. MAR Evaluation Criteria.

Category	Criterion	Description/Applicability
Water sources and demand	Availability of water	Whether water is available physically or institutionally; trends and variability
	Proximity of source water	Distance from water source to MAR site
	Source water quality	Quality of source water untreated or post-treated
	Estimates of water demand	Trends and variability in demand from MAR site under anticipated operation scenarios
Site hydrogeology	Hydrogeologic suitability Amount of available storage	Whether aquifer characteristics will allow anticipated recharge Physical space in aquifer, unsaturated pore space for unconfined aquifers, pressure head and porosity for confined aquifers
	Residence time Induced seismicity	How long water will stay under dominion and control for aquifer setting Likelihood of causing a seismic event
Environmental considerations	Waterlogging and nonbeneficial use Habitat concerns Effects on aquifer water quality	Where elevated water table conditions may affect soils and structures or be lost through evapotranspiration Possible effect on sensitive environments Effects of introducing water with differing chemistry
Implementation	Proximity to existing infrastructure Proximity to demand Land ownership and use Cost Site access and security Conditions surrounding site	Affects overall cost Affects overall cost Affects cost and permitting Total cost to implement and maintain Affects cost and permitting; applies to protection of water supply Affect costs, permitting, and environmental considerations
Regulatory considerations	Permitting and other regulatory requirements	Affect cost and permitting

CH 4: Example Site Selection Process and Site Scoring

		Scoring Measures					
Evaluation Criteria	Criteria Description	High 10 9 8	Medium 7 6 5 4	Low 3 2 1			
Hydrogeologic							
considerations							
1. Aquifer storage capacity	Available capacity for recharge	>0.6 m ³ /m ² (2 AF/ac)	0.1–0.6 m ³ /m ² (0.25–2 AF/ac)	<0.1 m ³ /m ² (9 < 0.25 AF/ac)			
 2. Hydrogeologic suitability Unconfined aquifers Confined aquifers 	Potential rate of aquifer recharge —Estimated from aquifer K values —Estimated from aquifer T values	>10 m/day (>250 ft/day) >300 m²/day (>900 ft²/day)	1.0–10.0 m/day (50–250 ft/day) 100–300 m ² /day (300–900 ft ² /day)	<1.0 ft/day (<50 ft/day) <100 m²/day (9 < 300 ft²/day)			
3. Residence timeUnconfined aquifersConfined aquifers	Duration recharged water is in aquifer Subcrop proximity to alluvial aquifers	>1 year >5 km (>3 mi)	4 months–1 year 1.6–5 km (1–3 mi)	<4 months <1.6 km (<1 mi)			
Environmental considerations							
4. Water quality	Aquifer water quality with respect to state standards, soil leaching potential	No standards exceeded; minimal leaching potential	Limited areas where standards exceeded; minor leaching potential	Large areas where standards exceeded; strong leaching potential			
5. Habitat concerns	Presence of threatened and endangered species habitat; effect on wetlands	Minor area of T&E habitat; no effect on wetlands	Some T&E habitat; some wetlands affected	Much T&E habitat; wetlands affected			
 Waterlogging and nonbeneficial use 	Potential to create high water table and increased ET by phreatophytes	Low concerns for waterlogging effects	Medium concerns for waterlogging effects	High concerns for waterlogging effects			
Implementation							
Considerations 7. Landownership and land use considerations	Proportion of area with accessible public land, multiple jurisdictions	Many areas of public and nonurban land	Some areas of public and nonurban land	Mostly private and/or urban land			
8. Existing infrastructure	Proximity of infrastructure (pipelines, ditches, etc.) and available capacity	Suitable infrastructure <10 km (<6 mi) from area	Suitable infrastructure 10–30 km (6–20 mi) from area	Suitable infrastructure >30 km (>20 mi) from area			
9. Proximity to areas with demand	Recharge areas nearby to areas of projected unmet demand in 2030	Near areas with demands >4,000 m ³ /year (>10,00 AF/yr)	Near areas with demands of 2,000– 4,000 m ³ /year (5000–10,000 AF/yr)	Near areas with demands <2,000 m ³ /year (<5,000 AF/yr)			
 Implementation costs Unconfined aquifers Confined aquifers 	Relative land costs for construction Depth to aquifer and proximity to existing high-capacity wells	Low cost <75 m 9 (<250 ft); many wells in area	Medium cost 75–300 m (250–1,000 ft); few wells in area	High cost >300 m (>1,000 ft); no wells in area			

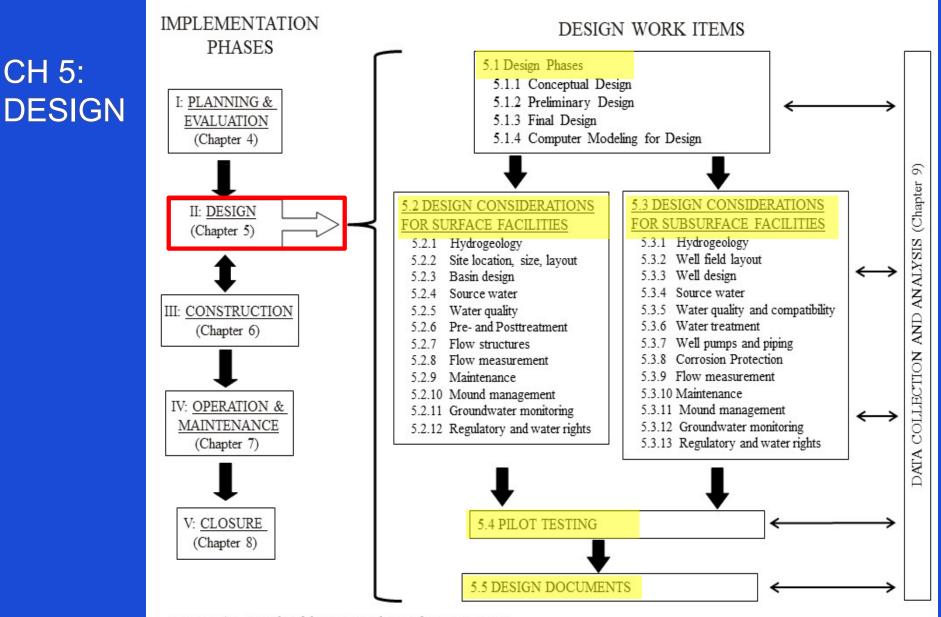
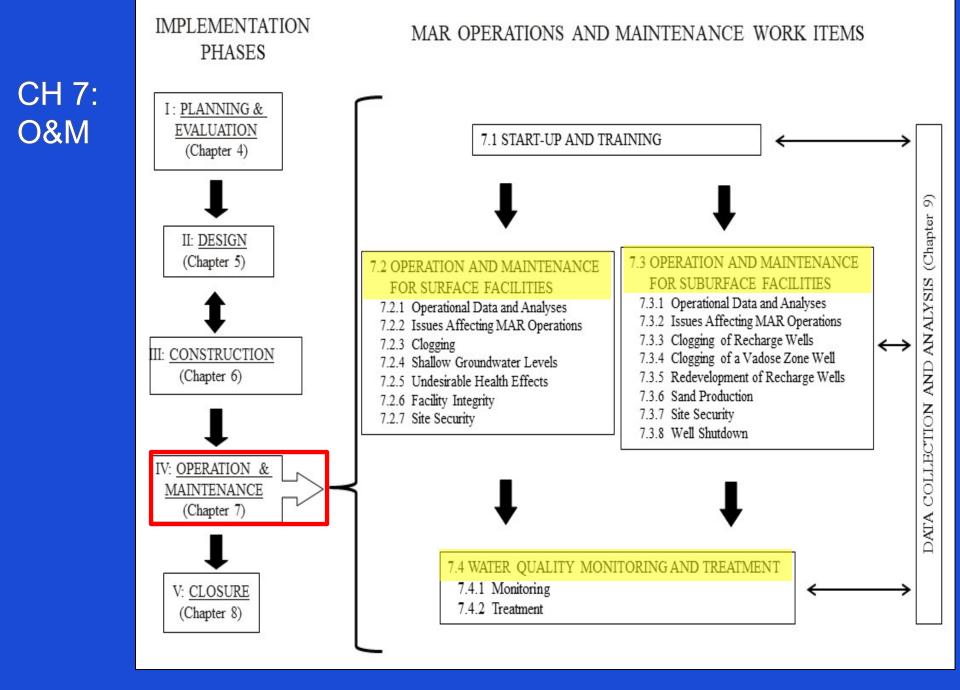
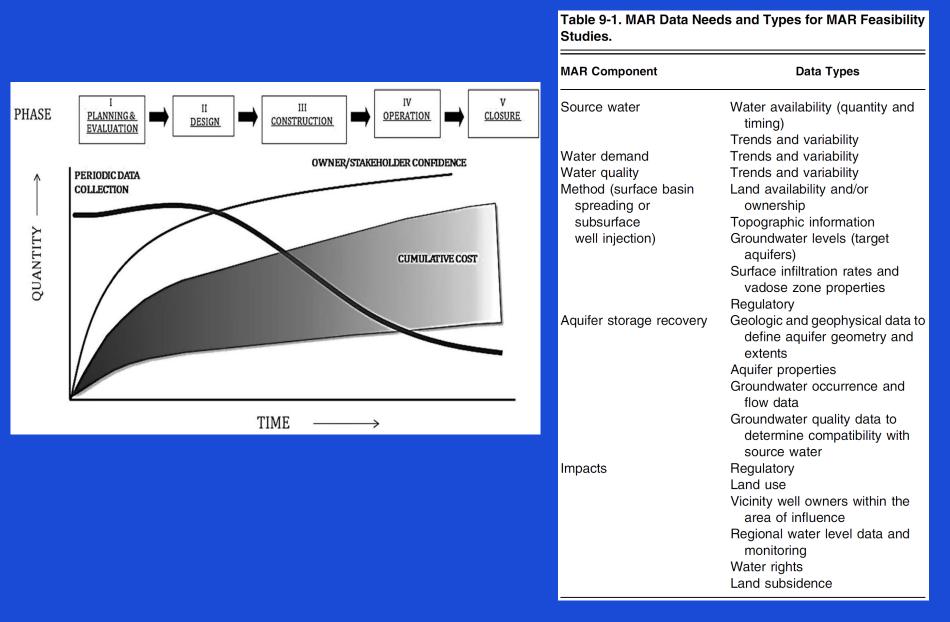




FIGURE 5.1. Details of the Design Phase of a MAR Project.

IMPLEMENTATION MAR CONSTRUCTION WORK ITEMS PHASES CH 6: 6.1 SITE PREPARATION I: PLANNING & CON-**EVALUATION** (Chapter 4) STRUC-6.3 AQUIFER CONSTRUCTION 6.2 AQUIFER CONSTRUCTION 6 TION FOR SUBURFACE FACILITIES DATA COLLECTION AND ANALYSIS (Chapter FOR SURFACE FACILITIES 6.3.1 Drilling 6.2.1 Excavation/Grading II- DESIGN 6.3.2 Well Construction/Development 6.2.2 Flow Structures and Piping 6.3.3 Aquifer and Well Testing (Chapter 5) 6.2.3 Facility Start-up and Testing 6.3.4 Installation of Pump and Piping 6.3.5 Facility Start-up and Testing III: CONSTRUCTION (Chapter 6) 6.4 ELECTRICAL AND SCADA SYSTEM IV: OPERATION & 6.5 WATER TREATMENT FACILITIES MAINTENANCE (Chapter 7) 6.6 MONITORING EQUIPMENT V: CLOSURE (Chapter 8) 6.7 CONSTRUCTION RECORDS

CH 9: DATA COLLECTION FOR MAR PROJECTS

APPENDICES

- A. Glossary of Terms
- B. Notations and Symbols
- C. Selected MAR Regulations in the United States
 - Federal regulations
 - Arizona
 - California
 - Colorado
 - Nebraska
 - New Mexico
 - Texas
- D. Case Studies

CASE STUDIES: SURFACE SPREADING

	Surface Facilities	Year Constructed	Location	Recharge Method	Size
1	Bear Canyon Recharge Project	2009	Albuquerque, NM	Surface recharge in natural arroyo	4.1M m³/yr 3 MGD
2	OCWD Surface Water Recharge Operations	1936 - 2012	Anaheim, CA	Santa Ana River Channel	28-50M m³/yr 20–36 MGD
3	Rancho California Water District	2000	Temecula, CA	Off-channel spreading basins	31M m ³ /yr 22 MGD
4	Tamarack Ranch Recharge Project	2007	Sterling, CO	Surface recharge basins	15M m³/yr 11 MGD
5	Southern Avra Valley Storage and Recovery Project	2008	Tucson, AZ	Surface recharge basins	80M m³/yr 58 MGD
6	Montebello Forebay Spreading Grounds	1937–1955	Pico Rivera, CA	In-stream check dams and off-channel spreading basins	164M m³/d 118 MGD (avg 1959 to 2016)

CASE STUDIES: WELL RECHARGE

	Subsurface Facilities	Year Constructed	Location	No. of Wells (Depth)	Size
7	Denver Basin Aquifer Recharge Demonstration Project	1996	Denver, CO	1 Well (475 m; 1,556 ft)	1582 m ³ 1.283 AF in 4 years
8	OCWD Talbert Gap Seawater Intrusion Barrier	1975	Anaheim, CA	36 wells (30-213m;100–700 ft)	28-50M m³/yr 20–36 MGD
9	Phoenix ASR Well	2010	Phoenix, AZ	1 Well (432m; 1,420 ft)	3.4M m ³ /yr 2.5 MGD
10	Rio Rancho Direct Injection Demonstration Project	2013	Rio Rancho, NM	1 Well (518m; 1,700 ft)	1.4M m³/yr 1 MGD
11	El Paso Clean Water Recharge	1984	El Paso, TX	10 Wells (193-269m; 632–881 ft)	10.4M m³/yr 10 MGD
12	City of Beaverton ASR Program	2001 2005	Beaverton, OR	3 wells (152m; 500 ft)	1.9M m³/yr 1.4 MGD

SUMMARY AND CONCLUSIONS

- The MAR Standard Guidelines developed by practitioners using a rigorous peer review process
- The MAR Standard Guidelines describes all aspects of a MAR project, geared towards those familiar groundwater investigations
- The MAR Standard Guidelines will facilitate increased use of this water resource management technique

HOW TO OBTAIN A COPY

 Go to the ASCE website link: https://sp360.asce.org/PersonifyEbusiness/Mer CHANDISE/PRODUCT-DETAILS/PRODUCTID/266147945

Google 'ASCE Standard Guideline 69-19'

tps:// sp360.asce.org /PersonifyEbusiness/Merchandise/Product-Details/productId/266147945									
	ASCE	AMERICAN OF CIVIL ENG	SOCIETY" SINEERS				ħ	Register	Login
	Merchandise	- Memb	ership *	C Education		Publication	ns 🔻	Join	
	Home > Merchand	dise > Standard Guide	lines for Manag	ed Aquifer Recharge (89-19) Standard Guide Aquifer Rechard	lines for Manage	d	List Price:	sontinue Shopping	
	Standard Guidelines for Managed Aquifer Recharge		Book - UPDF - Stock #4821 ISBN: 9780784482179 Standards ASCE/EWRI 89- American Society of Civil E 2020 / 208 pp. American Society of Civil E	10 ngineers		Quantity: [Format PD Soft Cove]	
				Additional Information General Information:			Buy in	ASCE Library	
	ASCE	9		Shipping Information Information for E-book Cust	tomers				

THANK YOU

GORDON MCCURRY GMCCURRY@MCCURRYHYDRO.COM

