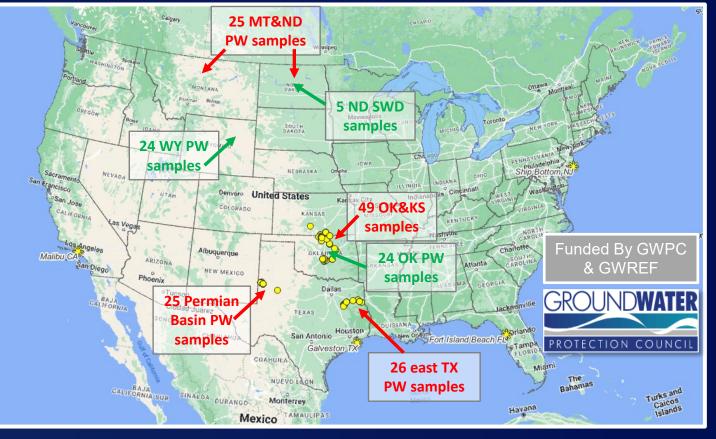


Pathway for Recovering Critical Minerals and other Elements of Interest from Produced Water

SPE Distinguished Lecturer 2024 & 2025

Dr. Kyle E. Murray *Principal Scientist* Murray GeoConsulting (MGC) Denver, Colorado USA

https://www.murraygeoconsulting.com/

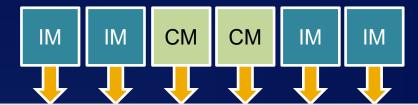


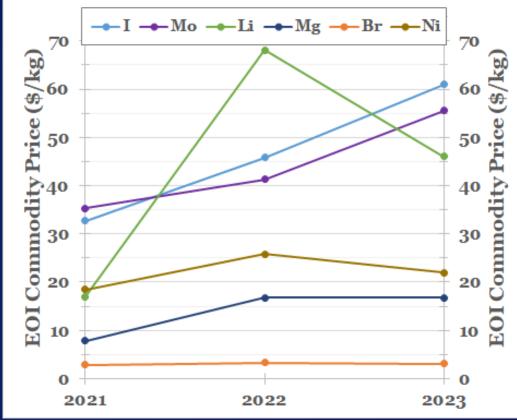
1

Presentation Outline

- Motivation
- What are Elements of Interest (EOI)?
- Pathway for Recovering EOI from Produced Water (PW)
- Introduction to Gross Values (GV)
- GV Case Study: Permian Basin
- GV Case Study: Well OK 005
- Daily GV Cases: Numerous
- Exploratory Data Analysis (EDA) & Prospecting

Motivation

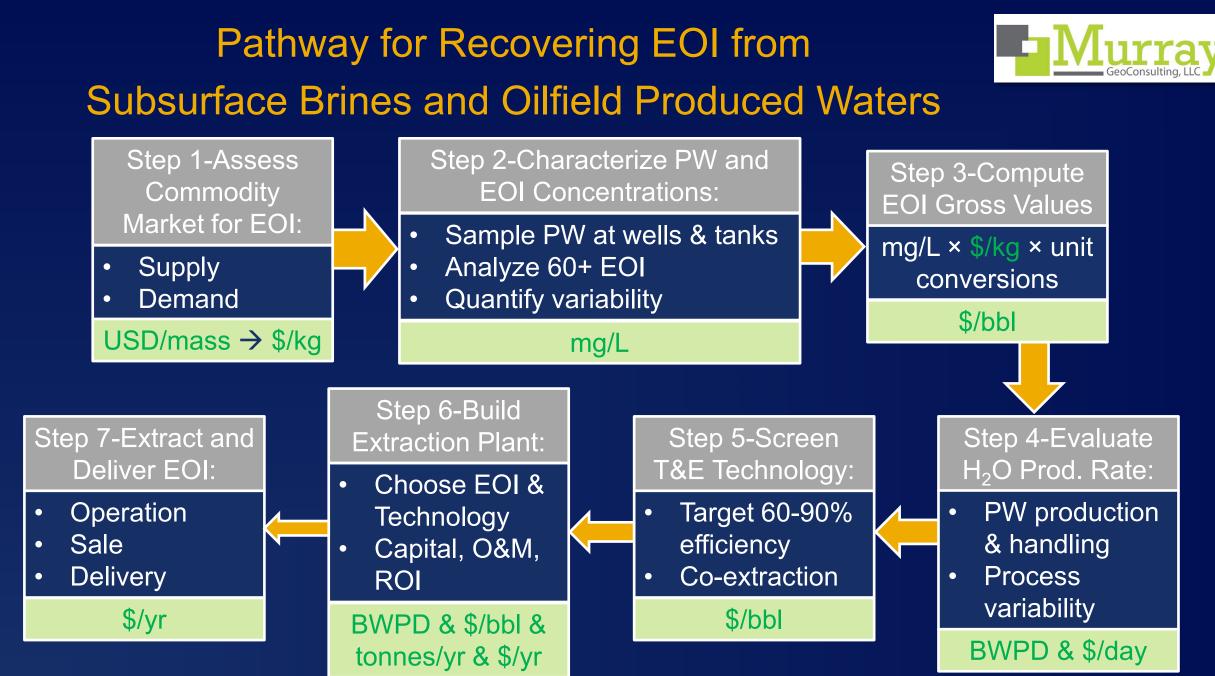



Critical Minerals (CM) are elements that are critical to the U.S. economic and national security because they have important uses, no viable substitutes, are mostly imported, and face potential disruption in supply.

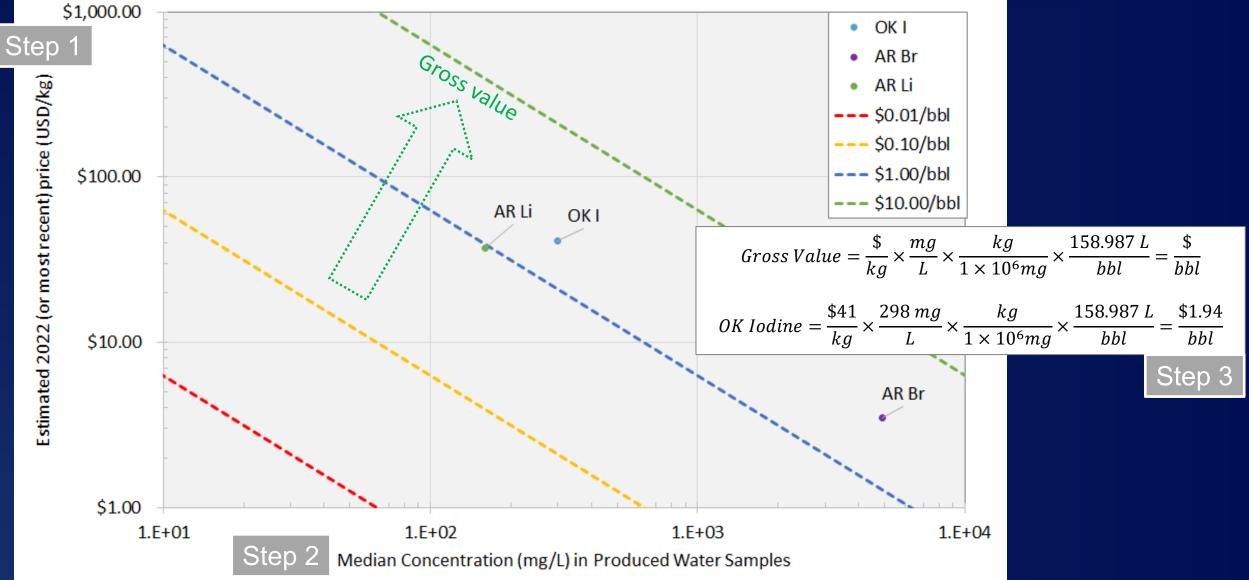
Mineral commodities are vital for economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications— from telecommunications (cell phones and computers), to renewable-energy generation (wind turbines, solar photovoltaics, and fuel cells), to clean forms of transportation (electric and hybrid cars).

USGS Professional Paper 1802, 2017 American Critical Mineral Independence Act of 2021 American Critical Mineral Exploration and Innovation Act

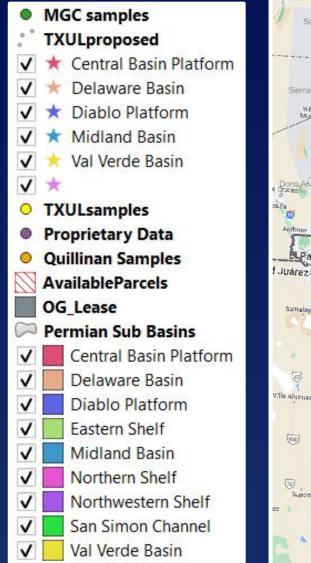
IM = Industrial Minerals

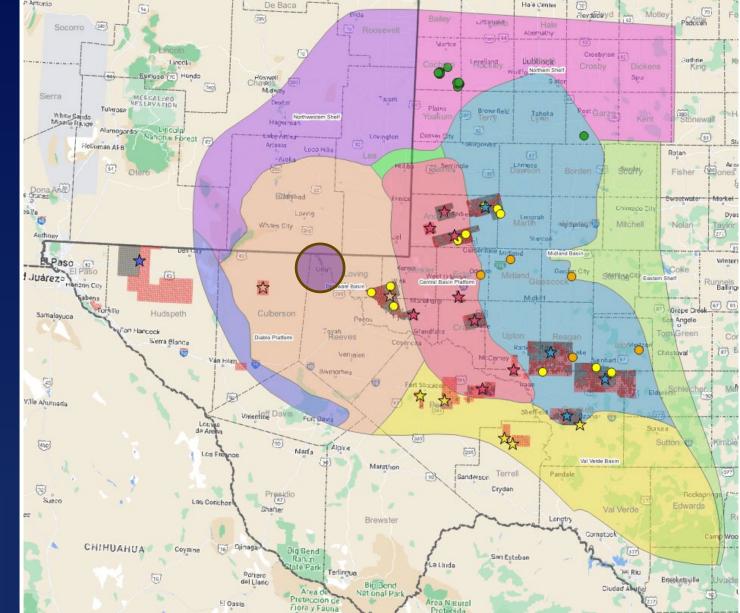


What are Elements of Interest (EOI)?

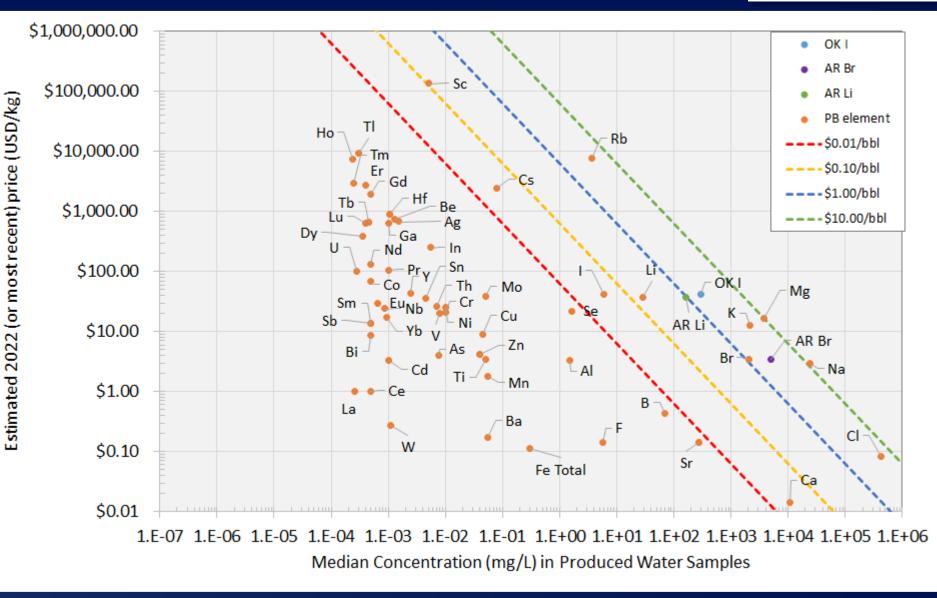

Elements of Interest (EOI) are elements that <u>may be</u> economically recovered from waters or solid wastes (i.e., \$ value > \$ extraction cost).

Period		1 I A																			18 VIII A
1	1s	1 ±1 H hydrogen 1.008	2 II A				atom English eleme	atomic # \rightarrow nic symbol \rightarrow ent name \rightarrow	29 +2,1 Cu copper 63.55		nonly formed ass (rounded)					13 III A	14 IV A	15 V A	16 VI A	17 VII A	2 He helium 4.003
2	2s	3 +1 Li lithium 6.968	4 +2 Be beryllium 9.012		Major	IM	СМ	CM- REE	CM- PGE						5 2p	; +3 B boron 10.81	6 -4 C carbon 12.01	7 -3 N nitrogen 14.01	8 -2 O oxygen 16.00	9 -1 F fluorine 19.00	10 Ne neon 20.18
3	3s	11 +1 Na sodium 22.99	12 +2 Mg magnesium 24.31		3 III B	4 IV B	5 V B	6 VI B	7 VII B	8 VIII B	9 VIII B	10 VIII B	11 I B	12 II B	1 3p	3 +3 Al aluminum 26.98	14 -4 Si silicon 28.09	15 −3 P phosphorus 30.97	16 -2 S sulfur 32.07	17 -1 Cl chlorine 35.45	18 Ar argon 39.95
4	4s	19 +1 K potassium 39.10	20 +2 Ca calcium 40.08	3d	6.	22 +4,3,2 Ti titanium 47.87	23 +5,2,3,4 V vanadium 50.94	24 +3,2,6 Cr chromium 52.00	25 2,3,4,6,7 Mn manganese 54.94	26 +3,2 Fe iron 55.85	27 +2,3 Co cobalt 58.93	28 +2,3 Ni nickel 58.69	29 +2,1 Cu copper 63.55	30 +2 Zn zinc 65.38	3 4p	1 +3 Ga gallium 69.72	32 +4,2 Ge germanium 72.63	33 −3 As arsenic 74.92	34 -2 Se selenium 78.97	35 -1 Br bromine 79.90	36 Kr krypton 83.80
5	5s	37 +1 Rb rubidium 85.47	38 +2 Sr strontium 87.62	4d	V	40 +4 Zr zirconium 91.22	41 +5,3 Nb niobium 92.91	42 +6,3,5 Mo molybdenum 95.95	43 +7,4,6 TC technetium 98	44 +4,3,6,8 Ru ruthenium 101.1	45 +3,4,6 Rh rhodium 102.9	46 +2,4 Pd palladium 106,4	47 +1 Ag silver 107.9	48 +2 Cd cadmium 112.4	4 5p	19 +3 In indium 114.8	50 +4,2 Sn tin 118.7	51 +3,5 Sb antimony 121.8	52 -2 Te tellurium 127.6	53 -1 iodine 126.9	54 Xe xenon 131.3
6	6s	55 +1 Cs cesium 132.9	56 +2 Ba barium 137.3	† 5d		72 +4 Hf hafnium 178.5	73 +5 Ta tantalum 180.9	74 +6,4 W tungsten 183.8	75 +7,4,6 Re rhenium 186.2	76 +4,6,8 OS osmium 190.2	77 +4,3,6 Ir iridium 192.2	78 +4,2 Pt platinum 195.1	2 79 +3,1 Au gold 197.0	80 +2,1 Hg mercury 200.6	8 6p	1 +1,3 TI thallium 204.4	82 +2,4 Pb lead 207,2	83 +3,5 Bi bismuth 209.0	84 +4,2 Po polonium 209	85 At astatine 210	86 Rn radon 222
7	7s		88 +2 Ra radium 226	‡ 6d	103 +3	104 Rf rutherfordium 267	105 Db dubnium 268	106 Sg seaborgium 271	107 Bh bohrium 272	108 Hs hassium 270	109 Mt meitnerium 276	110 DS darmstadtium 281	111 Rg roentgentium 280	112 Cn copernicum 285	1 7p		114 Fl flerovium 289	115 Mc moscovium 288		117 Ts tennessine 292	118 Og oganesson 294
Ianthanides (rare earth elements) + 4f Ce La Ce cerium Pr Nd raseodymium Pm Sm promethium Eu gadolinium Gd Tb Dy Ho Er Tm Yb 138.9 140.1 140.9 144.2 145 150.4 152.0 157.3 158.9 162.5 164.9 167.4 168.9 173.1																					
			actinides		۸.	90 +4 Th thorium 232.0	91 +5,4 Pa protactinium 231.0	92 +6,3,4,5 U uranium 238.0	93 +5,3,4,6 Np neptunium 237	94 +4,3,5,6 Pu plutonium 244	95 +3,4,5,6 Am americium 243	96 +3 Cm curium 247	8 97 +3,4 Bk berkelium 247	98 +3 Cf californium 251	99 Es einsteiniu 252	+3 100 Im fermin 251	n Mo um mendele	evium nobeli	um		


Introduction to Gross Values (GV) of EOI



Case Study: MGC and other EOI Data in PB



Case Studies: 60+ EOI in Northern Shelf of PB

Murray GeoConsulting, LLC

Compute Gross Values for EOI in 25 Northern Shelf Permian Basin PW samples

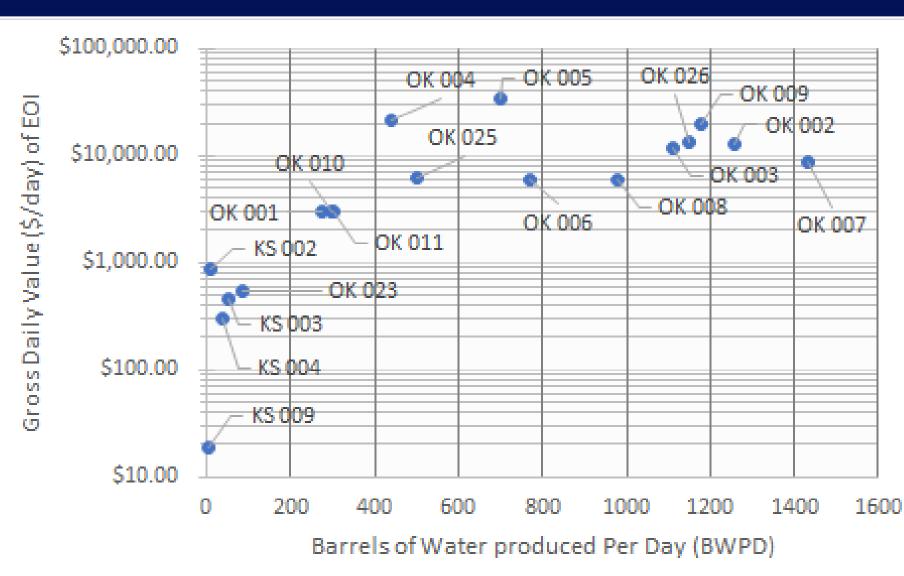
	TDS (mg/L)
min	55,800
25 th %	156,000
median	178,000
75 th %	193,000
max	537,000

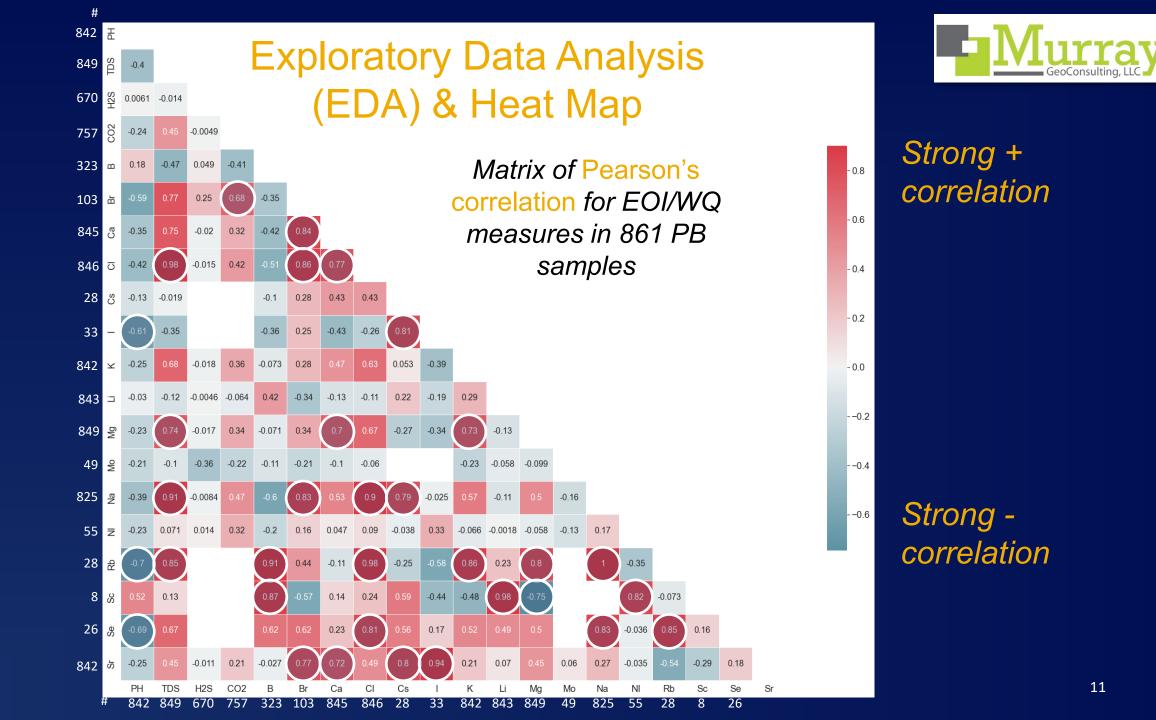
		ſ	Step 1	Step 2		Step 3
				OK 005		EOI Gross
EOI	EOI name	Ş	5/kg in 2022	mg/L	1	Value \$/bbl
Al	Aluminum	\$	3.31	1.4	\$	0.001
В	Boron	\$	0.43	11.9	\$	0.001
Ba	Barium	\$	0.17	3.5	\$	0.000
Br	Bromide	\$	3.50	996.0	\$	0.554
Са	Calcium	\$	0.01	19580.0	\$	0.044
Cd	Cadmium	\$	3.30	0.001	\$	0.000
Cl	Chloride	\$	0.08	176,000	\$	2.295
Со	Cobalt	\$	68.34	0.0014	\$	0.000
Cr	Chromium	\$	21.00	0.0080	\$	0.000
Cs	Cesium	\$	2,394.00	0.0666	\$	0.025
Cu	Copper	\$	9.04	0.0200	\$	0.000
Eu	Europium	\$	30.00	0.0002	\$	0.000
F	Fluoride	\$	0.14	4.90	\$	0.000
Fe Total	Iron	\$	0.11	18.8	\$	0.000
Ga	Gallium	\$	640.00	0.0020	\$	0.000
1	Iodide	\$	41.00	71.80	\$	0.468
In	Indium	\$	250.00	0.0006	\$	0.000
к	Potassium	\$	12.85	992.00	\$	2.027
La	Lanthanum	\$	1.00	0.0003	\$	0.000
Li	Lithium	\$	37.00	13.8	\$	0.081
Mg	Magnesium	\$	16.76	2520.0	\$	6.713
Mn	Manganese	\$	1.82	4.3	\$	0.001
Мо	Molybdenum	\$	39.25	0.0040	\$	0.000
Na	Sodium	\$	3.00	73000	\$	34.818
Ni	Nickel	\$	25.00	0.0120	\$	0.000
Rb	Rubidium	\$	7,770.00	1.9080	\$	2.357
Sb	Antimony	\$	13.89	0.0002	\$	0.000
Sc	Scandium	\$	137,000.00	0.0080	\$	0.174
Se	Selenium	\$	22.05	2.7600	\$	0.010
Sr	Strontium	\$	0.14	1470.0	\$	
Те	Tellerium	\$	2,000.00	0.0200	\$	
ті	Thallium	\$	9,400.00	0.0043	\$	
Y	Yttrium	\$	43.00	0.0026	\$	
Zn	Zinc	\$	4.19	0.2460	\$	
			Total G	\$		
			Economical	\$		

Example for Well OK 005

Step 1	
Step 2	
Step 3	
Step 4	

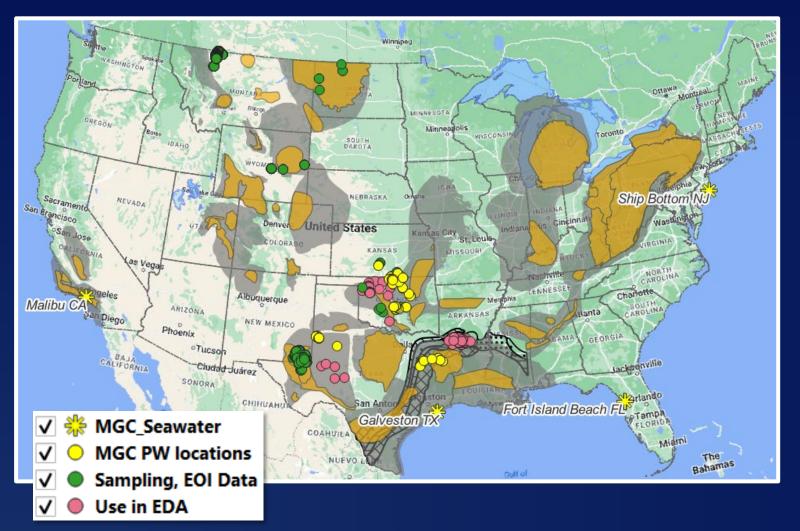
Assess Commodity Market for EOI (\$/kg) Characterize PW and EOI Concentrations (mg/L) Compute EOI Gross Values (\$/bbl) Evaluate PW Rate (BWPD)


				Slep 4		
vol. prod. rate	units	\$/unit	\$/day			
BWPD	700	\$ 49.61	\$	34,730.44		
BOPD	106	\$ 100.00	\$	10,600.00		
MCFPD	126	\$ 7.90	\$	995.40		


In this example, Well OK 005, the gross value of the EOI in the produced water exceeds the value of the oil and gas.

BWPD = barrels of water per day BOPD = barrels of oil per day MCFPD = 1000s of cubic feet of gas per day

Step 4: Daily Gross Values (BWPD x \$/bbl = \$/day)



Conclusions and Future Directions

- 10 EOI are economically recoverable from seawater and "un-enriched" brines
- An EDA can be used to prospect for brines that are "enriched" with EOI
- Continue characterizing produced, flowback, solution mining, and geothermal waters for EOI in various plays/formations
- 4) Evaluate extraction costs for target EOI