Technical Considerations for CO₂ Injection

Lewis Wandke PETROTEK CORPORATION

2024 GWPC Conference February 28, 2024

Introduction: CCS Landscape

Current U.S. CCS Environment

- ~185 individual Class VI wells pending approval
- ~15 Class VI wells approved
- 1 Class VI well with significant operational history
 - ~4.7 million metric tons injected to date

CO₂ Unit Visualization

- CO₂ exists as a gas in our normal environment
- At STP (60F, 14.7 psi),1 million metric tons occupies an approximate 1/2 mile cube

CO₂ Unit Visualization

- CO₂ transitions to a supercritical liquid at reservoir conditions
 - >88 deg F; >1070 psi
 - 1 million metric tons occupies a ~450 ft cube

CO₂ Emissions

- U.S. ranks 11th in per capita CO₂ emissions
 - 14.9 tonnes/person annually
 - 1 million tonnes offsets the annual emissions of 67,000 Americans
 - Total emissions of 5.1 billion metric tons/yr
 - ~10,000 Class VI wells required to offset total U.S. emissions assuming average injection of 500 kMTA/yr

Country	2022 Per Capita CO ₂ Emissions (tonnes)
Qatar	37.6
United Arab Emirates	25.8
Bahrain	25.7
Kuwait	25.6
Brunei	24.0
Trinidad and Tobago	22.4
Saudi Arabia	18.0
New Caledonia	17.6
Oman	15.7
Australia	15.0
United States	14.9

Regulatory Considerations

• Significant differences between CO₂ and brine injection:

- Surface Operations
 - CO₂: Wellbore hydrostatics change over time
 - Important when converting SHP to BHP
 - Brine: ~constant wellbore hydrostatics
- Reservoir Behavior
 - CO₂: multi-phase plume behavior which incorporates relative permeability and capillary pressure dynamics
 - Brine: 100% water-saturated
- Drift behavior
 - CO₂: Significant vertical and areal plume migration over short-term
 - Brine: Possible over long-term assuming density differences

Regulatory Considerations

- These differences impact all aspects of UIC:
 - Area of Review
 - CO₂: Plume can easily extend outside of COI boundary
 - AOR boundary becomes a composite of pressure + plume
 - Brine: Plume is generally much smaller and contained within COI
 - Corrective Action
 - CO₂: migrates upward by default (no pressure required)
 - Brine: requires pressure to migrate upward
 - Long Term Monitoring
 - CO₂: Monitoring wells assess post-operational plume containment
 - Brine: P&A well at end of project

CO₂ vs Brine: Physical Properties

- CO₂ is much more compressible than brine, even as a liquid
 - CO₂ density is more susceptible to changes in temperature and pressure between surface and downhole conditions
 - CO₂ liquid density is significantly less than brine (except for extreme cases)
 - Surface injection pressure is required to:
 - Create liquid/supercritical conditions
 - Overcome initial reservoir pressure

Normal Gradient Conditions

CO₂ Density and Viscosity

CCS Liquid Injection Conditions

CCS Supercritical Injection

Brine vs CO₂ Plume Behavior

- Reservoir pore volume is utilized very efficiently during brine injection
 - Piston-like plume displacement
 - Narrow dispersive front

- CO₂ plume is compressible and migrates upwards
 - Wide dispersive front
 - Majority of CO₂ remains near-wellbore
 - Idealized result; actual behavior depends on multiple reservoir characteristics

Plume Modeling

Radial Modeling

- 2D solution (cross section extending away from well)
- No structural considerations or geologic features
- Generally smaller models with faster run times (ideal for basic screening)
- Cartesian Modeling
 - 3D solution
 - Incorporates areal structure and geologic features (faults)
 - Necessary for accurate depictions of plume behavior in multiple dimensions
 - Post-operational Drift

Radial Modeling Example

- Radial Model Parameters
 - h = 100 m
 - Φ = 10%
 - $k_h = 100 \text{ md}$
 - $k_v = 10 \text{ md}$

- p_i = 1,500 psi + 1.42z (0.433 psi/ft)
- T = 120°F (isothermal)
- Q = 10 kg/s = 315,360 metric tons/yr
- t = 1 year

No capillary pressure

Modeling Dynamics – Single Layer

0.00

Modeling Dynamics – 2-Layer

Modeling Dynamics – 3-Layer

Modeling Dynamics – 4-Layer

379m	

Modeling Dynamics – 5-Layer

Modeling Dynamics – 10-Layer

455m	

Modeling Dynamics – 20-Layer

512m

Layering Effects on Plume Extent

Capillary Pressure

- <u>Capillary pressure</u> pressure required to displace wetting phase (brine)
 - Function of interfacial tension, pore size and pore distribution
 - Defines relative permeability
 - Ultimately increases pressure, lowers injectivity and constrains plume drift

Post-Operational Drift

- CO₂ will migrate to the top of the injection interval and also migrates up-dip
- Drift behavior influenced by several variables:
 - Formation structure
 - Local boundaries
 - Final pressure distribution
 - Vertical permeability
 - Capillary pressure
- Plume stabilization ultimately occurs when buoyancy and capillary pressure reach equilibrium

Cartesian Results – No Capillary Pressure

Cartesian Results – Capillary Pressure

Defining Injection Capacity

- 'Pore space' is often cited in CCS capacity discussion
 - Function of porosity only
- Capacity is better defined as the maximum volume that can be injected while remaining below fracture pressure
 - Function of permeability-thickness, fracture pressure and depth
 - Additional depth allows for a larger delta-p window between initial and maximum pressures

Defining Injection Capacity

- Depth of 5,000 ft:
 - Initial pressure = 0.433 psi/ft = 2,165 psi
 - Max Pressure = 90% of 0.6 psi/ft frac gradient = 2,700 psi
 - Max ∆p = 535 psi
- Depth of 10,000 ft:
 - Initial pressure = 0.433 psi/ft = 4,330 psi
 - Max Pressure = 90% of 0.6 psi/ft frac gradient = 5,400 psi
 - Max ∆p = 1,070 psi
- Pressure and temperature (vs. depth) factor into CO₂ properties but are less important

Feasibility Screening

 Maximum injection rate (and ultimate storage capacity) can be screened using general site assumptions

Estimated Maximum Rate (Thousand Metric Tons/yr)

- Assumptions:
 - 20 year injection
 - Normally pressured reservoir
 - T = 60 + 0.015 deg/ft
 - **Φ** = 10%
- Constraints:
 - Fracture pressure = 0.60 psi/ft
 - Final pressure = 90% of frac pressure

Questions and Discussion

Lewis Wandke **PETROTEK CORPORATION** 5935 S. Zang Street, Suite 200 Littleton, CO 80127

Iwandke@petrotek.com

