Spatial-temporal risk mapping at a geologic carbon sequestration site

Brandon Schwartz

Summary

- Topic arose from NRAP Task 6 discussions concerning the subsurface drivers of PISC length
 - What combination of project variables leads to shorter PISC periods?
- This work explores six standard variables: Q, μ , k, h, ϕ , Ct
 - We show that these variables can be grouped: $H = \frac{Q\mu}{kh} \& S = C_t \varphi r^2$
- We explore the dependence of pressure evolution on S and H
- We create spatial-temporal maps of leakage risk

Model Development

- Layer cake reservoir model of radial flow with Tartan grid
- Vary properties and measure pressure over 64 combinations of:
 - Q: 0.5 & 3 Mt/a
 - μ: 0.3 & 1.3 cP
 - h: 100 & 500 m
 - k: 50 & 400 mD
 - \$\overline\$ 40%
 - Ct: 10⁻⁶ & 10⁻⁵ psi⁻¹
- 50 years injection, 50 years PISC
- Sample along one radius for lookup tables

dP (psi)

Top: Petrel model. Middle: Pressure evolution at 1 year, 50 years, and 100 years. Bottom: Radius vs time plots showing pressure increase for the entire project.

Spatial-temporal Mapping

- Radius vs time
- Boundary of pressure front
- Region of increasing pressure during injection; decreasing pressures post-injection
- Post-injection buildup strongly influenced by H

•
$$H = \frac{Q\mu}{kh}$$

1st Order Sensitivity of Individual Variables

- Porosity and rock compressibility have low sensitivity
- Injection rate and reservoir thickness has a stronger influence during the injection period
- Brine viscosity has a low sensitivity that follows the pressure plume
- Permeability has a stronger influence on nearfield pressure

Correlation Coefficients of Individual Variables

- Porosity and rock compressibility have a negative correlation with pressure buildup
- Injection rate and brine viscosity have a positive correlation with pressure buildup
- Reservoir thickness and permeability have a negative correlation with pressure buildup

2 Grouped Variables

H is a measure of flow resistance:

- $H = \frac{Q\mu}{kh}$
- Units: Pa
- S is a measure of storage capacity:
- $S = C_t \phi r^2$
- Units: m²/Pa

Both variables can predict pressure evolution during injection and PISC periods. H is a much stronger predictor, especially a) during injection and b) close to the wellbore High values of H and low values of S correspond to higher pressure buildup

Petrel → OriginPro

Results: Pressure Evolution

- For all cases, pressure buildup is characterized as
 - Close to the injector
 - Largest during the injection period
 - Rapidly falls off during PISC

- Pressure buildup is largest for
 - High H, Low S
 - High Q, μ
 - Low k, h, φ, Ct, r
- PISC pressure "move out" controlled by H

Pressure Buildup Dependence on H

Low values of H have quick pressure drops after injection ceases

1st Order Sensitivity

- Used Open-IAM to calculate time series sensitivity at certain radii
- H has a high 1st order sensitivity, especially from 0-50 years and close to the wellbore
- S is analyzed with radius removed in order to use Open IAM
 - $S = C_t \varphi r^2$

•
$$S' = C_t \varphi$$

1st Order Sensitivity of Grouped Variables

S predicts pressure buildup during PISC far away from well

Correlation Coefficients

Data for H and S suggest that H/S should better predict pressure evolution

Mapping risk of leakage vs radius and time

- Using NRAP Open-IAM, wellbores were placed at increasing radial distance from the injector
- Well permeability (log) was varied between -17 and -13
- Lookup tables for all combinations of subsurface variables were used to generate 10,000 realizations with varying well permeability
- P95 leakage rate was selected and mapped vs. radius and time
 - Open-IAM utilizes a conservative approach which may be considered specific to over-pressured reservoirs

Result: Spatial-temporal Leakage Risk Map

- Left: P95 of leakage rate into aquifer
 - 95% of 10,000 realizations had leakage equal or less than shown
- The P95 leakage occurs when log(k_{well}) is -13.2
 - Solution is dependent on range of permeabilities selected
- Leakage risk is concentrated a) during the injection period and b) closer to the injector

Thank you!

Questions?

schwartz@psu.edu

