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PFAS Transport & Fate in the Environment

>>> Numerous Sources 
of Release to:

From: ITRC, 2018

-atmosphere
-surface water
-soil
-groundwater
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PFAS at MAR Facilities
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From: Canez et  al., 2021

Potential Impact: Leaching of PFAS from recharge basin, 
through vadose zone, to groundwater



Case Study: Sweetwater Recharge Facility
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• Recharge of treated municipal wastewater

• Permitted to recharge 1.6 M m3/year

• Started operations in 1989

• Received treated wastewater from original WWTP until 2014

• New WWTP in operation from 2014

• Old WWTP=secondary treatment

• New WWTP=tertiary treatment

• Depth to GW: 42-48 m

• Estimated transit time to GW: 30 d

From: Canez et al., 2021

[high variability]



Case Study: Sweetwater Recharge Facility
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• PFOS is present in highest concentrations
• Groundwater concentrations are higher than current WWTP 

effluent concentrations
• Groundwater concentrations are highest for the original basins, 

which received the most wastewater from the original plant
• Groundwater concentrations are lowest for newest basin, which 

has received wastewater only from the new WWTP

Original Basins

Newest Basin

WWTP Effluent PFOS

From: Canez et al., 2021



Groundwater Level Fluctuations
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Groundwater 
Elevation

PFOS + PFOA

Groundwater 
Elevation

PFOS + PFOA

• Correlations between 
groundwater levels and PFAS 
concentrations for several wells

• Possible indication of leaching of 
PFAS present in vadose zone

• On-going study to investigate 
PFAS distribution and migration 
within recharge basin

From: Canez et al., 2021

Case Study: Sweetwater Recharge Facility



PFAS at MAR Facilities

Assessing Impacts and Evaluating Mitigation Actions: 

Understand the processes influencing PFAS retention and 
leaching in the vadose zone
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From: Canez et  al., 2021



PFAS in Soil & Vadose Zone
Critical questions to address:

– How are PFAS retained in the vadose zone? [retention processes]

– How long are PFAS retained in the vadose zone? [magnitude of 
retention & leaching potential]

– What is the magnitude of mass discharge to groundwater? 
[leaching rates]

Focus: retention 
& migration of 
PFAS in the VZ
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PFAS migration in the vadose zone is a function of 
several factors:

– Source type
• e.g., AFFF sites vs biosolids/wastewater-application sites
• types of PFAS and relevant concentration ranges

– Site conditions
• Soil properties (sorptive constituents, air-water interfacial area)
• Physical and geochemical heterogeneity
• Potential precursor presence and transformation
• Presence of other contaminants

– Precipitation/Evapotranspiration/Infiltration

• Infiltration-recharge dynamics

– Transport & Retention processes
• Solid-phase sorption
• Adsorption at air-water interfaces
• Impact of infiltration-recharge dynamics on retention and transport
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Simplified Retention Analysis
• Retardation Factor for aqueous-phase transport of PFAS 

influenced by solid-phase adsorption and air-water interfacial 
adsorption:

R = 1 + Kd ρb/θw + Ki Ai/θw

Kd = solid-phase adsorption coefficient
Ki = air-water interfacial adsorption coefficient
Ai = air-water interfacial area
ρb = bulk density of porous medium
θw = volumetric water content

• Retention is a function of:
– Properties of PFAS
– Properties & conditions of the soil

11

Porewater Sorbed Adsorbed at air-water interface



PFAS Properties
Most PFAS are amphiphilic (contain both nonpolar & polar regions) 

***behave as surfactants

Image from: http://www.dynamicscience.com.au/tester/solutions1
/chemistry/foodchemistry/emulsions.htm
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Nonpolar “tail”– fluorinated carbon chain
rather than hydrogenated

Polar 
“head 
group”

PFAS chains are both hydrophobic and oleophobic
*Provides water and oil repellency

>>special attributes that make PFAS useful for many applications

>>causes transport to be complex

http://www.dynamicscience.com.au/tester/solutions1


PFAS Structures

• PFAS have different types of surfactant headgroups

Anionic

Zwitterionic

Cationic

Nonionic



PFAS Structures
PFAS have different tail structures

• Per vs Poly
• Straight-chained vs branched
• Different chain lengths

Straight long-chained

Polyfluoroalkyls

Branched

Perfluoroalkyls

Straight short-chained



QUESTIONS
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Solid-phase Sorption
• Sorption of PFAS by soil, sediment, and aquifer material 

(geomedia) is complex

• Function of PFAS molecular structure and the geochemical 
properties of the geomedia

Geomedia are geochemically 
heterogeneous

From: Li, Y., Oliver, D.P., Kookana, R.S., 2018. Sci. Total Environ. 628/629, 110-120

Multiple Sorption Mechanisms



QSPR Analysis

• QSPR = quantitative-structure/property-relationship analysis

• Empirical approach to estimating properties and parameters 
based on molecular descriptors

• Example common descriptors
– Number of Carbon atoms
– Number of Fluorinated Carbons
– Molar Volume--- represents volume in solution occupied by molecule

• Use QSPR to characterize partitioning behavior

17



QSPR Analysis
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• Fluorinated carbons- commonly used 
- Works for PFCAs & PFSAs
- Not for more complex PFAS structures

• Molar Volume is more representative
Molar volume can be determined 
from molar-mass/density 



Air-Water Interface

Soil-Water Interface

GAC-Water Interface

Uniform log-linear relationship indicative that hydrophobic 
interaction serves as primary driving force for partitioning

Air-Water Interface = model interface for investigating PFAS 
molecular structure impacts on partitioning [most physically 
& geochemically homogeneous]

From: Brusseau, 2019



• Standard approach for characterizing sorption of hydrophobic 
organic contaminants-

Kd = Koc × foc

Kd = equilibrium sorption coefficient
Koc = organic-carbon normalized sorption coefficient
foc = fraction of organic carbon

• Question: is this approach representative for PFAS?

Quantifying PFAS Sorption



Meta-Analysis of PFAS Sorption

• Integrated QSPR analysis of the differential sorption 
of short-chain versus long-chain anionic PFAS

• QSPR = quantitative-structure/property-relationship 
analysis, an empirical approach to characterize 
partitioning/adsorption behavior

• 11 Studies:
– Total of 65 soils & freshwater sediments
– wide range of organic carbon, silt+clay, pH
– 16 PFAS (9 perfluorocarboxylic acids & 7 perfluorosulfonic acids)
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Closed symbols = long-chain
Open symbols = short-chain

• Log Koc values for short-chain PFAS deviate from 
regression representing long-chain PFAS

• “Enhanced” sorption of short-chain PFAS

From: Brusseau, 2023c



Closed symbols = long-chain
Open symbols = short-chain

• Deviations for short-chain PFAS are greater for lower organic-
carbon contents

• Sorption of short-chain PFAS mediated by additional soil 
components (clay minerals, metal-oxides)

From: Brusseau, 2023c



Closed symbols = long-chain
Open symbols = short-chain

• Deviations for short-chain PFAS are greater for high
silt+clay content

• Sorption of short-chain PFAS mediated by additional soil 
components (clay minerals, metal-oxides)

From: Brusseau, 2023c



Koc approach may be reasonable for long-chain 
PFAS for soils with OC>1%

Long-chain PFAS for soils & sediments with 
organic-carbon content > 1%

Not for short-chain PFAS

Benchmarks [organic media = humin & peat]

*Note- need to investigate other PFAS types

From: Brusseau, 2023c



Surfactant Behavior of PFAS

• Adsorption at the air-water interface

• Ramifications:
– Potential to cause surfactant-induced flow
– Increased retention and retardation for transport
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Image: https://en.wikipedia.org/wiki/Langmuir%E2%80%93Blodgett_film Image: Guo et al., 2020



Surfactant-Induced Flow

• Surfactant-induced flow leads to:
– Transient flow
– Impacts to solute transport
– Changes in local water saturation
– Changes in the magnitude of air-water interfacial area
– Impact on the magnitude of retention by air-water interfacial adsorption

>>> Complex, interconnected flow and transport behavior
27
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Fluid-Fluid Interfacial Retention
• Transport in source zones is influenced by additional 

retention processes:

– Adsorption at air-water interfaces in vadose zones

– Adsorption at NAPL-water interfaces in NAPL source zones
[NAPL = chlorinated solvents, fuels]

From: Brusseau et al., 2019b

28

>>>> this adds complexity

From: Brusseau, 2018



Simplified Retention Analysis

• Retardation Factor for aqueous-phase transport of PFAS 
influenced by solid-phase adsorption and air-water interfacial 
adsorption:

R = 1 + Kd ρb/θw + Ki Ai/θw

Kd = solid-phase adsorption coefficient

Ki = air-water interfacial adsorption coefficient

Ai = air-water interfacial area

ρb = bulk density of porous medium

θw = volumetric water content

29
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PFAS Transport Experiments

• PFAS transport: unsaturated conditions

**Greater retardation for transport in unsaturated conditions; a result of 
adsorption at the air-water interface

SAT UNSAT

From: Brusseau et al. 2019, 2021
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PFOS



R and PFAS Molecular Structure
• Retardation is larger for longer-chain PFAS
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Retention of PFAS

• Retardation Factor for aqueous-phase transport of PFAS 
influenced by solid-phase adsorption and air-water interfacial 
adsorption:

R = 1 + Kd ρb/θw + Ki Ai/θw

Kd = solid-phase adsorption coefficient

Ki = air-water interfacial adsorption coefficient

Ai = air-water interfacial area

ρb = bulk density of porous medium

θw = volumetric water content

32

Magnitude 
of AWIA



• Air-water interfacial adsorption coefficient (Ki) 
is a function of:

- PFAS molecular structure

- PFAS concentration (nonlinearity)

- Solution composition

33

• QSPR Meta-Analysis:
– 61 individual PFAS
– All PFAS structure types
– Hydrocarbon surfactants for comparison



-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300 350 400 450 500 550 600

lo
g 

K
i(

cm
)

Vm (cm3/mol)

PFCA
PFSA
Branched-PFCA
Poly-anionic
Cationic
Zwitterionic
Nonionic
Alcohol
Hydrocarbon
Regression

Ki for PFAS
• Ki is larger for larger PFAS
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Air-Water Data Sets

Predictions representative for most PFAS structure types



Air-water interfacial area (Ai) is a function of:
- Soil properties- Interfacial area is larger for media with smaller 

grains and larger solid-surface areas

- Water saturation- Interfacial area increases nonlinearly as 
wetting-fluid conten decreases

35

Air-water interfacial areas 
measured for unsaturated 
media

From: Brusseau, 2023a



Questions for Field-scale Applications:

• Is surfactant-induced flow relevant?
– Unlikely to be significant for lower concentration ranges present 

at many sites
– May be relevant under high-concentration conditions

• How to determine the Ki?
– QSPR estimation model appears reasonable for many PFAS

• How to determine the Ai?
– One of the most difficult parameters to characterize and quantify
– Prediction models based on soil properties have been developed 

but need testing for a range of soils

36



QUESTIONS
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Dynamic Infiltration & Recharge Impacts
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Water Saturation Air-Water Interfacial Area

Simulation of a single precipitation-infiltration-redistribution event

-PFAS present in vadose zone after 30-year operation of FTA
-No PFAS input during 10-day precipitation event

Changes in air-water interfacial area due to 
changes in water saturation

From: Brusseau & Guo, 2022



PFAS Retention Dynamics
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Total Soil ConcentrationPorewater Concentration

• Porewater concentrations 
increase temporarily

• The change is greatest for PFOS 
(highest interfacial activity)

• Leaching is observed (change in 
total soil concentration)

• Leaching is greatest for PFPeA
(lowest retention)

• Leaching is minimal for PFOS 
(highest retention)

From: Brusseau & Guo, 2022



Temporal evolution of vertical profiles of PFOS (Vinton soil) at a FTA

AZ climate NJ climate

With A-W interfacial 
adsorption

No A-W interfacial 
adsorption

With A-W interfacial 
adsorption

No A-W interfacial 
adsorption

From: Guo, Zeng, and Brusseau, 2020

• Higher recharge rate = shorter transit times

• Air-water interfacial adsorption significantly increases retention 
and decreases migration rate in the vadose zone

2 m in 5 yrs2 m in 20 yrs 2 m in 1 yrs2 m in 13 yrs

Long-term PFAS Migration in Vadose Zone



Long-term PFAS Distribution in 
Vadose Zone

From: Brusseau, Anderson, & Guo, 2020

- The data represent 124 
boreholes across 30 AFFF 
sites for which at least 8 
depth-discrete samples were 
collected for each borehole.

- Depth interval spans from 
ground surface to top of 
saturated zone (gw).

>>Evidence of downward migration      
& chromatographic separation

Depth distribution of total PFAS in soil as a function of chain length 

Long-chain (≥C7)

Field Study of PFAS Vadose-zone concentrations



Field Studies of PFAS soil vs porewater concentrations

From: Brusseau, 2023d

Cs = Soil Concentration

Cpw = Porewater Conc

>>Evidence that PFAS distributes between soil and 
porewater as anticipated for these three systems

Soil vs Porewater Concentration 
Distributions



Other Factors

• Physical heterogeneity & preferential flow
– May reduce retention and led to enhanced transport

• Geochemical heterogeneity
– Complicate sorption processes

• PFAS mixtures
– Impact of co-solute interaction on retention

• Co-contaminants
– Impact on PFAS retention

• Precursors and non-characterized PFAS
– Potential impacts

43



Summary
• Retention and leaching in the vadose zone is complex-

influenced by multiple processes

• Adsorption at the air-water interface can be significant
– Determining air-water interfacial areas at the field scale is difficult

• Solid-phase sorption can be complex
– Koc approach may not be representative

• Models are being developed to simulate PFAS transport
– Applications for:

• Quantifying leaching and mass discharge to groundwater
• Determining soil screening levels
• Evaluating mitigation and remediation actions



Thank You

Contact: Brusseau@arizona.edu
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