

Industry Opportunities for Carbon Capture, Utilization and Storage (CCUS) in the U.S.

Presented at:

GWPC Underground Injection Control Conference

Presented by:

Michael Godec, Vice President Advanced Resources International, Inc.

February 16-19, 2020 San Antonio, Texas

Status of CO₂–EOR: A Snapshot in Time

The development of large natural sources of CO₂ (e.g., McElmo Dome, Jackson Dome, etc.) established the foundation for the CO₂-EOR industry. Capture of industrial sources of CO₂ is helping drive its growth.

Current CO₂-EOR Operations and CO₂ Sources (2014)

- Based on the 2014 O&GJ Survey, 136 significant CO₂-EOR projects currently produce 300,000 barrels per day in the U.S. by injecting 3.5 Bcfd of CO₂, with 0.7 Bcfd from industrial sources.
- In spite of limitations in supplies of CO₂ and lower oil prices, existing CO₂-EOR projects are being expanded and new CO₂-EOR projects started.
- We note increased CO₂-EOR activity even though the O&GJ has terminated its CO₂-EOR Survey.

Source: Advanced Resources International based on Oil & Gas Journal and other industry data, 2014.

CO₂-EOR: A Niche or a Robust Carbon Management Strategy?

U.S. Conventional Oil Endowment. The U.S. conventional oil in-place endowment is 624 billion barrels. Primary recovery and water flooding have recovered about a third of this oil endowment, leaving behind 414 billion barrels.

Much of this "left behind oil" (284 billion barrels) is technically favorable for CO₂-EOR and is widely distributed across the U.S.

JAF2016 052 PPT

Potential CO₂ Sources

Potential Electric Generation CO₂ Sources Above 1 Million Tonnes/Year

Source: Advanced Resources International, 2019.

Legend

<u>Source</u> Electricity Generation

CO₂ Emissions (Metric Tons CO₂)

1,000,000 - 5,000,000

5,000,000 - 10,000,000

10,000,000 - 15,000,000

15,000,000 - 20,000,000+

The Low-Hanging Fruit: High Purity Stream Potential CO₂ Sources

Legend

High Purity Source
Ammonia
Ethanol
Ethylene Oxide
Hydrogen

Hydrogen Natural Gas Processing

CO2 Emissions (Metric Tons CO2)

100,000 -500,000

500,000 - 1,000,000

1,000,000 - 1,500,000

1,5000,000 - 5,000,000+

"Next Generation" CO₂ Enhanced Oil Recovery

Use of more efficient CO₂-EOR technologies and extension of these technologies to new oil resource settings constitutes "next generation" CO₂-EOR:

- Scientifically-based advances in CO₂-EOR technology
- 2. Integrating CO₂ capture with CO₂ utilization by CO₂-EOR
- 3. Application of CO₂-EOR to residual oil zones (ROZs)
- 4. Deployment of CO₂-EOR in offshore oil fields.
- 5. Deployment of CO₂-EOR in tight (shale) oil formations.

Use of "next generation" CO₂-EOR will expand oil production and CO₂ storage capacity in the U.S.

U. S. Oil Recovery and CO₂ Storage From "Next Generation" CO₂-EOR Technology*

Reservoir Setting	Oil Recovery*** (Billion Barrels)		CO ₂ Demand/Storage*** (Billion Metric Tons)		
	Technical	Economic**	Technical	Economic**	
L-48 Onshore	104	60	32	17	
L-48 Offshore/Alaska	15	7	6	3	
Near-Miscible CO ₂ -EOR	1	*	1	*	
ROZ (below fields)****	16	13	7	5	
Sub-Total	136	80	46	25	
Additional From ROZ "Fairways"	40	20	16	8	

^{*}The values for economically recoverable oil and economic CO₂ demand (storage) represent an update to the numbers in the NETL/ARI report "Improving Domestic Energy Security and Lowering CO₂ Emissions with "Next Generation" CO₂-Enhanced Oil Recovery (CO₂-EOR) (June 1, 2011).

^{**}At \$85 per barrel oil price and \$40 per metric ton CO₂ market price with ROR of 20% (before tax).

^{***}Includes 2.6 billion barrels already being produced or being developed with miscible CO₂-EOR and 2,300 million metric tons of CO₂ from natural sources and gas processing plants.

^{****} ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

BBA Enhancements to IRC Section 45Q -- Highlights

Previous 45Q	Bipartisan Budget Act of 2018			
 75 million metric ton cap 	 Eliminates 75 million metric ton cap; applies to new facilities that "break ground" by EOY 2023. 			
 Credit based on "captured qualified CO₂" 	 After enactment, credit based on captured "qualified carbon oxide" (CO₂ and other carbon oxides). Allows for the transfer of qualified credits 			
 \$20/metric ton for CO₂ stored and not used for EOR \$10/metric ton for CO₂ stored and used for EOR 	 \$50/mt for geologic storage and \$35/mt for EOR (each rate phases up over 10-year period from 2017 to 2026). Existing qualified facilities would continue to receive the original inflation adjusted \$20 and \$10 credit rates. 			
 Available to <u>facility</u> with capture equipment capturing at least 500,000 metric tons CO₂/year. 	 Capture > 500,000 metric tons CO₂/year for electric generating units; > 100,000 metric tons CO₂/year for other. Credit goes to the owner of the capture equipment. Available to "direct air capture" and "beneficial use (with 25,000 metric ton threshold)" 			
 Credit available until the 75- million-ton cap is reached. 	 Credit available for 12 years from the date the carbon capture equipment is placed in service. 			

Request for Comments by IRS on 45Q

- On 5/20, IRS issued Request for Comments on 45Q enhancements.
- Areas of comment included:
 - Establishing "secure geologic storage"
 - Leakage after credit award "recapture"
 - Defining "qualifying facilities"
 - Defining "commence construction"
 - Credit transferability, timing, flexibility
 - Allowable structures/partnerships
- 90+ comments received
- Guidance ??????

OMB No. 1545-0123 Form **8933** Carbon Oxide Sequestration Credit ► Attach to your tax return. Department of the Treasur ► Go to www.irs.gov/Form8933 for the latest information. Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility before February 9, 2018, disposed of in secure geological storage and not used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, nor utilized in a way described in section 45Q(f)(5). 1a Metric tons captured and disposed of . . b Inflation-adjusted credit rate . . . Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility before February 9, 2018, disposed of in secure geological storage and used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, or utilized in a way described in section 45Q(f)(5). 2a Metric tons captured and used . . b Inflation-adjusted credit rate . . . Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility on or after February 9, 2018, during the 12-year period beginning on the date the equipment was originally placed in service, disposed of in secure geological storage, and not used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, nor utilized as described in section 45Q(f)(5). 3a Metric tons captured and disposed of b Section 45Q(a)(3) applicable dollar amount (see instructions) Qualified carbon oxide captured using carbon capture equipment originally placed in service at a qualified facility on or after February 9, 2018, during the 12-year period beginning on the date the equipment was originally placed in service, disposed of in secure geological storage, and used as a tertiary injectant in a qualified enhanced oil or natural gas recovery project, or used as described in section 45Q(f)(5). 4a Metric tons captured and disposed of b Section 45Q(a)(4) applicable dollar amount (see instructions)

Other Issues of Concern with 45Q

- Is 12 years of credits enough for commercial viability?
- What types of business models will involve?
- What will be the role and appetite for financial institutions and tax equity players?
- Is the 12/31/2023 deadline achievable for large, complex (e.g., power generation, direct air capture) projects?
- What impact will CCS have on electricity dispatch?

Are the 45Q Enhancements Enough?

Continued RD&D

- Reduce costs of CO₂ capture
- Pursue "next generation" CO₂-EOR; especially targeting "carbon negative oil"

Further incentives beyond 45Q?

- Tax-exempt private activity bonds
- Master limited partnerships
- Incentives for CO₂ pipelines/pipeline expansions/buildout
- Ensuring Parity for CCS in the power markets
 - Feed-in tariffs, CCS in "Clean Energy" Portfolio Standards
- State incentives

Possible State Policy Approaches/Incentives

- Supportive state regulatory policies
- Clear rules for long term storage
 - CO₂ storage trust funds; rules for CO₂/pore space ownership and responsibility
- CO₂ pipelines common carrier/eminent domain
- Financial incentives for carbon capture
 - Financial assistance, off-take priority, cost recovery, eligibility under "clean energy" standards, assumption of long-term liability
- Tax incentives/optimization
 - Additional tax credits for CO₂-EOR + storage, tax exemptions for "pollution control equipment" associated with CO₂ capture.

Support for CO₂ Pipeline Infrastructure

- Regional Initiative co-convened by Governors of Wyoming and Montana.
- Launched in 2015:
 - Officials from 15 states*
 - With industry and NGO stakeholders and experts
- Objectives:
 - Help policymakers better understand states' potential for CCS, CO₂-EOR and utilization
 - Recommend state and federal strategies and policies
- Support implementation of policy recommendations and project deployment.
- Funding from MacArthur Foundation, Hewlett Foundation and Spitzer Charitable Trust.

Potential Regional CO₂ Pipeline Corridors

(Illustrative Purposes Only)

*State participation varies and includes governors' staff, cabinet secretaries, utility commissioners and agency and commission staff.

Historical Business Models

- Natural sources. The earliest projects leveraged their proximity to large, natural sources of CO₂.
- <u>Industrial capture</u>. Commoditization of products at industrialized centers have recognized the value of CO₂.
- Government subsidized. Some projects were government subsidized in order to achieve commercial viability.
- Infrastructure development. Field operators can link to major pipeline sources of CO₂.

New business models likely to evolve as incentives spur new deployment.

Petra Nova Carbon Capture Project: Closer Look at a New Business Model

- \$1 billion project 50-50 joint venture between NRG Energy's Carbon 360 unit and JX Nippon Oil & Gas Exploration.
- Financing Petra Nova required creative combination of partners.
 - US DOE awarded a \$167 million grant as part of a competitive solicitation under the DOE's Clean Coal Power Initiative.
 - NRG decided to build/own the CO₂
 delivery pipeline and take a 50% equity
 stake in the West Ranch oil field.
 - JX Nippon eventually matched NRG's \$300 million equity stake.
 - \$250 million in loans from Japanese banks.

Commercial Structure

 NRG Energy, Inc. is the largest independent power company in the US

Hilcorp Energy is one of the largest privately-held oil and natural gas E&P companies in the US

JBIC and NEXI combined on a \$250 million project loan.

US DOE awarded \$190 MM grant funded through Clean Coal Power Initiative

Capital Costs for Retrofitting Coal-Fueled Power Plant with CO₂ Capture

Cost Comparison of BD3 and Shand CCS Facilities

Source: Summary for Decision Makers on Second Generation CCS, Based on the Shand CCS Feasibility Study, International CCS Knowledge Centre, ccsknowledge.com.

Engineering study post BD3 re adding post-combustion CO₂ capture to SaskPower's Shand Power Station.

Capital costs can be significantly reduced capital costs per MWh

- Construction at larger-scale using extensive modularization
- Improved integration of the capture facility with the power unit
- Incorporating lessons learned from building and operating BD3.

"Next Generation" CO₂ EOR and Carbon Negative Oil – Is it Possible?

- Most life-cycle analyses (LCA) of CO₂-EOR are based on historical operations:
 - Where CO₂ use was minimized per incremental barrel because of the high costs for CO₂
- Such LCAs often do not represent the emerging paradigm where CO₂ storage is a <u>co-objective</u>.
- Such LCAs often do not represent current efficiencies in CO₂-**EOR** operations.
- Such LCAs often do not represent current refining operations.
 - An increasing portion of crude today is transformed into noncombustible products, like asphalt, lubricants, waxes, and chemical feedstocks.

Project ECO₂S Storage Zone Properties

Paluxy sandstone

- Goal: Demonstrate the subsurface at Kemper can safely/permanently store commercial volumes of CO₂
- Abundant stacked saline sandstone bodies in Paluxy, Wash-Fred, and lower Tuscaloosa.
- 350 meters of net sand. Logs and core show sandstone average porosity of 30%(!!)
- Core analysis indicates all sandstones watersaturated
- Darcy-class permeability common (up to 16 Darcies)

High-porosity sandstone in **Paluxy Formation**

Elemental Log Analysis (ELAN*) interpretation

*ELAN is a mark of Schlumberger

nterpretation: sandy braided stream deposit

Storage Complex Capacity

- Each of the three potential storage zones have commercial capacity
- Together the three storage zones result in a gigatonne capacity storage complex that has the potential to act as a regional hub

CO ₂ Storage Reservoir	P ₁₀ Capacity (MMmt)	P ₅₀ Capacity (MMmt)	P ₉₀ Capacity (MMmt)
Massive/Dantzler	60	120	200
WashFred.	280	540	920
Paluxy	160	310	530

DOE methodology for site-specific saline storage efficiency calculation based on fluid displacement factors for clastic reservoirs where net pay, net thickness and net porosity are known of 7.4% (P₁₀), 14% (P₅₀) and 24% (P₉₀) (Goodman et al., 2011)

- Low-cost storage options occur beneath the energy facility -- \$2.00 -\$4.00 USD per metric ton depending on volume of CO₂ captured (after DOE investment)
- Drives the value proposition where existing infrastructure could be utilized for CO₂ capture, compression, transportation and storage

"Stacked" Storage/Combined CO₂-EOR Plus Storage

In a carbon constrained emissions world, associated storage with CO₂-EOR may not achieve emissions reduction targets. In association with the EOR project, "pure" storage may be conducted in a high permeability saline formation above or below the oil reservoir.

This could require regulation mandates or steep incentives to push forward.

https://www.arb.ca.gov/cc/sequestration/seq.htm

U.S. Regulatory Experience – Class VI

- Concerns remain that obstacles exist to allow CO₂-EOR to be viable source for CO₂ emissions reduction.
- To date, the timeline for obtaining Class VI permits approval has been too long – as much as four years or more.
- 50-year "default" for post-injection site care (PISC) hinders possible CCS project financing
- EPA's inconsistent application of financial responsibility instruments is hindering permitting and deployment.
- The process for allowing states to acquire primacy for Class VI well permitting has been very slow.
- Greater Class VI regulatory certainty is necessary to encourage new Class VI projects.

Concluding Thoughts and Observations

- 1. CO₂-EOR Offers Large CO₂ Storage Capacity Potential. CO₂-EOR in oil fields can accommodate a major portion of the CO₂ captured from industrial facilities for the next 30 years.
- 2. CCS Benefits from CO₂-EOR. The revenues (or cost reduction) from sale of CO₂ to EOR helps CCS economics, overcomes some barriers, while producing oil with a lower CO₂ emissions "footprint."
- CO₂-EOR Needs CCUS. Large-scale implementation of CO₂-EOR is dependent on CO₂ supplies from industrial sources.
- Both CCUS and CO₂-EOR Still Need Supportive Policies and **Actions.** R&D investment, supportive policies and expedited CO₂ pipelines can accelerate integration of CO₂-EOR and CCUS.
- **Business Models Likely to Evolve Given New Market and Policy** Realities.

Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

CO₂-EOR Technology: A Closed-Loop System

CO₂-EOR Performance

While relatively simple in concept, successful application of CO₂-EOR entails sophisticated design, process/flow modeling, and continuous monitoring.

Recovery of OOIP – Permian Basin

Source: Oxy, 2017.

In the Permian Basin, CO₂ EOR can recover 15% of OOIP.

Recovery of OOIP - - Gulf Coast

Source: Denbury Resources, 2018.

In Gulf Coast oil fields, CO₂-EOR can produce as much oil as primary or secondary recovery.

CCUS Economics 101 – 45Q Example

CO₂-EOR Storage **Cost of Capture EOR Sales** 45Q Tax Credit **Transport Cost** Total of: minus Equipment x plus Financing % Rate to EOR field Revenues \$35/ton O&M **Energy** penalties Less than: OR **Saline Storage Storage Charges Transport Cost 45Q Tax Credit** by Saline to Saline Total of: minus minus \$50/ton **Operator** Reservoir

Distribution of Benefits of CO₂-EOR

Notes		CO ₂ -EOR Industry	Mineral Owners	Federal/ State Treasuries	Power Plant/ Other Capturers of CO ₂	General Economy
1	NYMEX Oil Price	\$80.00				
2	Transportation/Quality Differential	(\$3.00)				\$3.00
	Realized Oil Price	\$77.00				
3	Less: Royalties	(\$13.10)	\$10.90	\$2.20		
4	Production Taxes	(\$3.20)	(\$0.50)	\$3.70		
5	CO2 Purchase Costs	(\$13.50)			\$13.50	
6	CO2 Recycle Costs	(\$5.00)				\$5.00
7	O&M/G&A Costs	(\$15.00)				\$15.00
8	CAPEX	(\$7.00)				\$7.00
	Total Costs	(\$56.80)	\$10.40	\$5.90	\$13.50	\$30.00
	Net Cash Margin	\$20.20				
9	Income Taxes	(\$7.10)	(\$3.60)	\$10.70	-	-
	Net Income (\$/B)	\$13.10	\$6.80	\$16.60	\$13.50	\$30.00

JAF2017 016.xls

- 1 Assumes an oil price of \$80 per barrel (WTI) based on EIAAEO 2017 oil price for year 2022.
- 2 Assumes \$3 per barrel for transportation.
- 3 Royalties are 17%; 1 of 6 barrels produced are from Federal and state lands.
- 4 Production and ad valorem taxes of 5% from FRS data
- 5 CO2 sales price of \$30/metric ton including transport; 0.45 metric tons of purchased CO2 per barrel of oil.
- 6 CO2 recycle cost of \$10/metric ton; 0.5 metric tons of recycled CO2 per barrel of oil.
- 7 O&M/G&A costs from ARI CO2-EOR cost models.
- 8 CAPEX from ARI CO2-EOR cost models.
- 9 Combined Federal and state income taxes of 35%, from FRS data.
- Source: Advanced Resources International internal study, 2017.

CO₂-EOR provides a wide distribution of benefits:

- Federal and state treasuries receive \$16.60/Bbl, equal to \$37/mt.
- The power industry receives \$13.50/Bbl, equal to \$30/mt.
- The U.S. economy receives \$30/Bbl, supporting well paying jobs and manufacturing.

