

Hydrogen and Energy 101: Role of CCUS

GWPC Annual Forum – Salt Lake City, UT – September 29, 2021 - www.gwpc.org

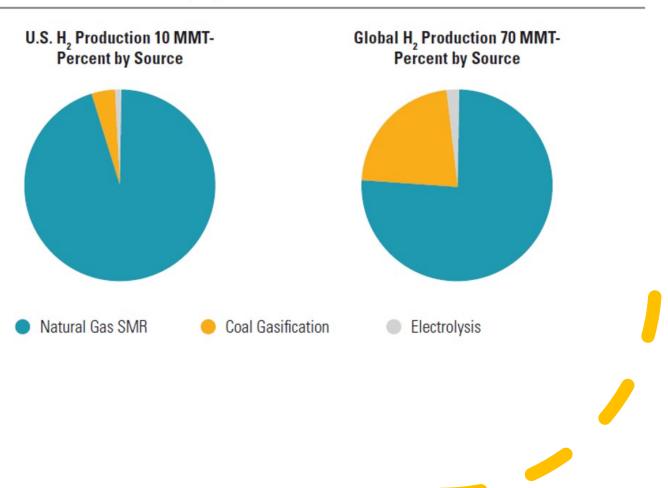
Talib Syed, P.E.

www.talibsyed-assoc.com

Tel: 720.877.1272 (m)

OUTLINE OF PRESENTATION:

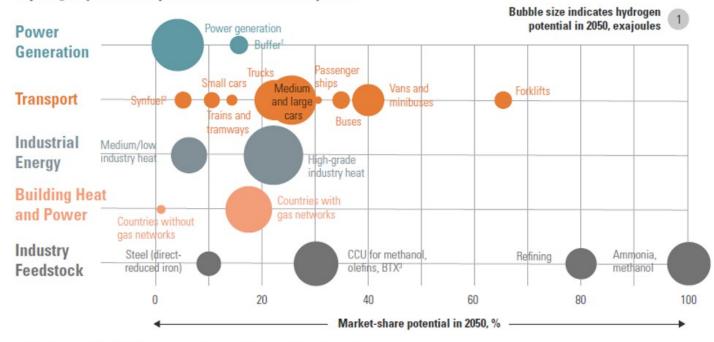
- Production and Uses of H₂
- Integration of Fossil Energy into the H₂ Economy
- H₂ as a Solution to a Carbon-Neutral Economy
- Health/Safety Aspects of H₂
- Geologic Storage of H₂
- Global CCS Projects
- Top Clean Energy Developments
- Concluding Remarks


Hydrogen production: what colour?

	Commonly used term	Process	Carbon output
	"Grey" hydrogen	Fossil fuel-to-hydrogen conversion	Fossil CO₂ is emitted
		Electrolysis based on high-carbon electricity	
"CLEAN/LOW-CARBON"	"Blue" hydrogen	Fossil fuel-to-hydrogen conversion with CCS	 Fossil CO₂ is captured and stored
		Methane pyrolysis	No CO ₂ is emitted, solid carbon is produced
	"Green" hydrogen	Sustainable biomass-to-hydrogen conversion	Biogenic CO₂ is emitted
		Water-splitting (electrolysis/photoelectrocatalytic) based on renewable electricity	No CO ₂ is emitted
	Carbon negative hydrogen	Sustainable biomass-to hydrogen-conversion with CCS	Biogenic CO ₂ is captured and stored
		Biomass pyrolysis	No biogenic CO ₂ is emitted, solid carbon is produced

3

REF: Hydrogen Strategy: **Enabling A** Low-Carbon Economy, USDOE, July 2020


Figure 3. U.S. and Global Production of Hydrogen

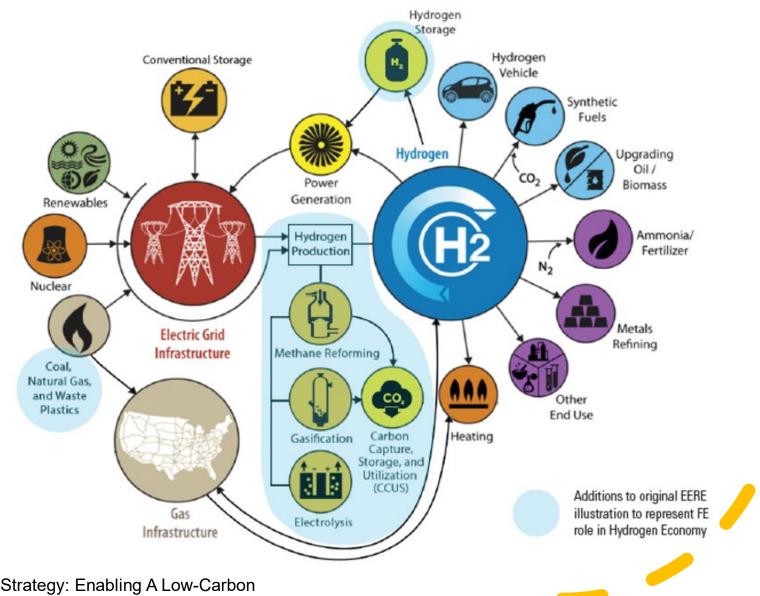
REF: Hydrogen Strategy: **Enabling A** Low-Carbon Economy, USDOE, July 2020

Figure 8. Global Potential for Future Use of Hydrogen

Hydrogen potential by market in 2050, %, exajoules

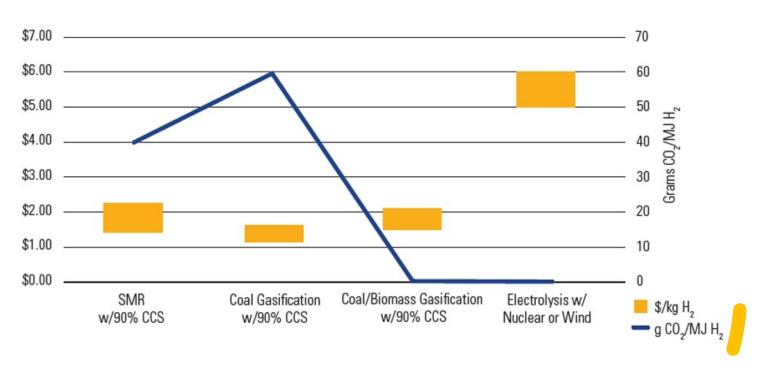
^{1 %} of total annual growth in hydrogen and variable renewable-power demand.

³ Carbon capture and utilization; % of total methanol, olefin, and benzene, toluene, and xylene (BTX) production using olefins and captured carbon.



² For aviation and freight ships.

Figure 1. Integration of Fossil Energy into the Hydrogen Economy4


 Integration of Fossil Energy into the Hydrogen Economy

REF: Hydrogen Strategy: Enabling A Low-Carbon Economy, USDOE, July 2020

Hydrogen Strategy: **Enabling** a Low-Carbon Economy, USDOE, July 2020

Figure 4. Current Cost of Hydrogen Production and CO₂ Intensity

(Source: IEA Roadmap for Hydrogen and Fuel Cell and DOE Baseline Studies)

Brief Look at the H₂ Economy

Deploying clean H_2 could reduce \sim 34% of GHG emissions from fossil fuels by 2050

Scaled-up H_2 industry can lower cost of renewable H_2 (\$ 2/kg -2030 and \$ 1/kg -2050 (current cost - \$ 7.50/kg for green and \$ 2.40/kg for blue H_2).

Steel industry – likely benefactor of H_2 economy (~ 9% of global carbon emissions)

Home heating and cooking – another benefactor by blending 5-20% with natural gas for transport through existing pipelines

H₂ will play a bigger role in transportation

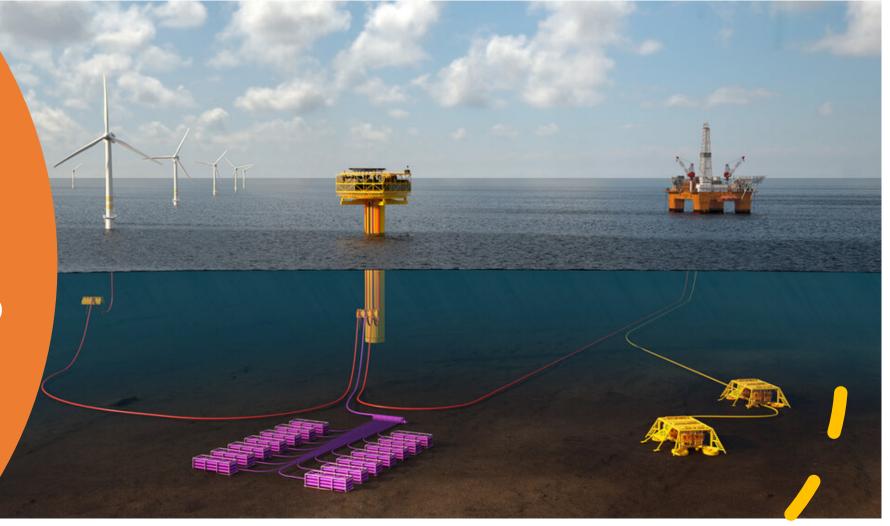
Health and Safety Aspects of H₂

 $\rm H_2$ has more energy/unit of mass compared to natural gas or gasoline (attractive as transport fuel), however has low energy density/unit of volume (Requires larger $\rm H_2$ volumes to meet identical energy demands as other fuels)

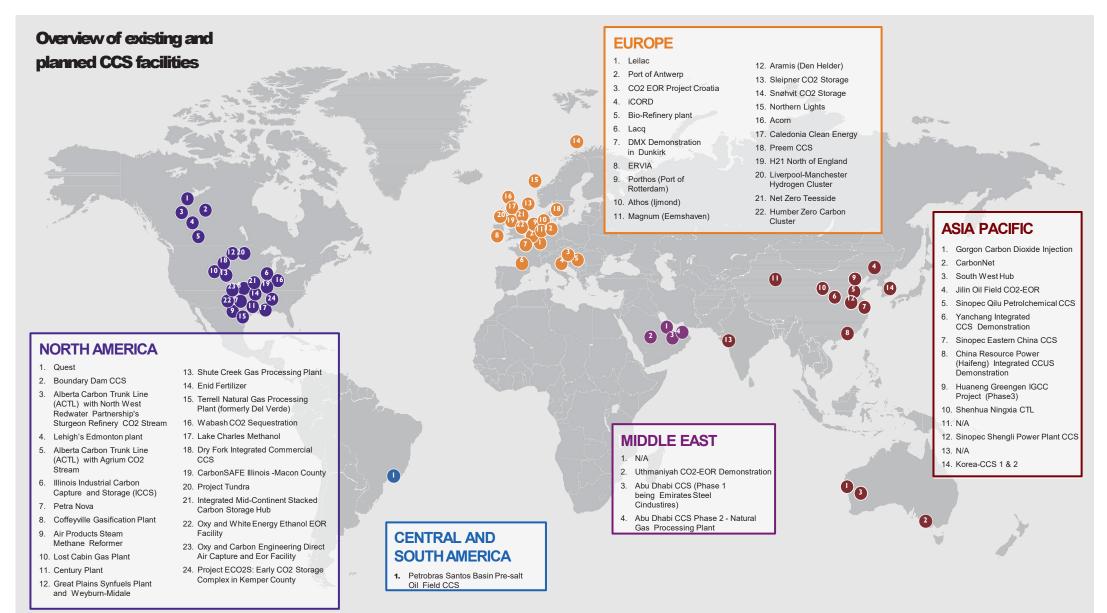
H₂ can be compressed, liquified, or transformed into H₂-based fuels with a higher energy density (but subsequent re-conversion uses some energy)

 $\rm H_2$ handling requires special equipment and procedures – widespread use would bring new challenges. Requires adequate ventilation, leak detection and special flame detectors

Health and safety considerations of H_2 -based fuels and feedstocks are familiar in the energy sector - exceptions are NH_3 and liquid organic hydrogen carriers (LOHCs)


NH₃ raises more health and safety concerns than H₂ and will require professionally trained operators. It is highly toxic, flammable, corrosive and escapes from leaks in gaseous form

Geological Storage of H₂


- Geological storage best option for large-scale/ long-term storage and tanks for short-term/ small-scale storage
- Possible storage sites: Salt caverns, depleted O&G reservoirs and deep saline aquifers
- Salt caverns used for H₂ storage in UK and US since 1980s (Beaumont, TX, Delta, UT – hub and spoke model) - likely the lowest-cost option
- Depleted O&G reservoirs Larger capacity, and more permeable. Will require contaminants removal prior to use in fuel cells (Greensand DK)
- Aquifers have least amount of experience. Both depleted O&G and aquifers have natural barriers that can provide containment. If can overcome challenges, attractive for large scale H₂ storage

Offshore
Hydrogen
Storage
(Courtesy Technip
FMC – Deep
Purple)

Global CCS projects

Courtesy:
Shell Quest
Canada

Top Clean Energy Developments of 2020/2021

- Coal is on its way out: (1) US and EU coal plants retirements outpaced new plants, (2) global coal consumption down
- Gas also in decline: Utilities not replacing coal with gas
- China and carbon neutrality: Plans to be carbon neutral by 2060 (will adopt more vigorous policies/measures)
- Green Deals carbon-free electricity goes mainstream: (1) S&P Global Clean Energy index up 37% (in last 2 years), (2) EU stimulus package set aside 25% for clean energy technologies, (3) Biden administration proposed a carbon-free power sector by 2035
- Big banks make climate commitments: To reduce carbon intensity of entire portfolios over time
- Financial Institutions and shipping decarbonization: Poseidon Principles finance initiative to decarbonize the maritime sector

(SOURCE: Laurie Stone/RMI/Energy Post – Jan 4, 2021)

Top Clean Energy Developments of 2020/2021 (Continued)

- Green H₂ taking off
- Increase in Blue H₂ projects in US and globally
- US rejoins Paris Agreement CATCH Act –
 45Q changes
- Bans on gas vehicles are growing
- Renewed focus on methane emissions
- Racial justice enters climate activism discussion

Concluding Remarks

- H₂ will play an important role for future energy needs globally
- CCUS will also play a bigger role in enabling transition to a low carbon economy
- Major challenges to massively scale-up the H₂ economy: government policies and financial incentives; global cooperation; buildup of infrastructure and commercial markets/hubs; technology challenges – transportation, potential use/blending of existing gas pipeline networks, decarbonizing major industry sectors – steel, cement etc.
- Industrial-scale production of low-carbon H₂ possible with today's technology with ability for substantial near-term emission reductions
- O&G industry with its unique skills, resources and experience can play a major role in this energy mix transition