Stacked storage and 45Q impact in the CO₂-EOR Sustainability

Ramón Gil-Egui^(*) and Vanessa Nuñez-López^(*)

(*)Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin

UIC Conference San Antonio TX, February 2020

1. What's the problem?

- Fossil energy is blamed for Climate change
- Growing global pressure to get rid of fossil energy
- Non-emitting alternatives are not yet scalable or affordable
- Fossil energy business as usual cannot continue
- CCUS/CO₂-EOR technologies are gaining a big momentum
- U.S. Government approved a carbon tax credit incentive (45Q)

How can we take a Sustainable approach for CCUS decision-making?

Specifically in CO₂-EOR operation, integrating environmental and social-economic dimensions?

2. Theoretical framework (1/3)...

Environmental dimension

1. Dynamic Life Cycle Analysis (*d*-LCA):

Assess Carbon Balance throughout the whole CO₂-EOR system from raw material extraction, CO₂ capture, transport, EOR operations, product transport, refinery processing, distribution of end products, and combustion of final products.

Social dimension (externalities)

2. Social cost & benefits:

Estimate NPV of the monetized damages associated with incremental carbon emissions in a given year, including (but is not limited to):

- changes in net agricultural productivity,
- human health,
- property damages from increased flood risk,
- value of ecosystem services due to climate change.

(U.S. Interagency Working Group on Social Cost of Carbon, 2015)

3. Theoretical framework ...(2/3)...

Economic Dimension

- 3. Marginalist Production Theory:
- differential calculations
- relationships between the objective functions
- the impact of the last input unit

Productivity:

$$Tot.Prod = q = f(x_1^v, x_2^k, x_3^k, x_4^k, ... x_n^k)$$
 to simplify $q = f(x_1^v)$, then,

MeProd=
$$(q/x_1^v)$$
 and **MgProd** = $(\partial q/\partial x_1^v)$,

Economic optimum:

Max. Benefit = $Tot.Income_{max}$ - $Tot.Cost_{min}$: when : MgB_{max} =0; when : Mg.Income=Mg.Cost;

Tot.Income=
$$P * f(x_1^v)$$
; **and**, **Tot**. **Cost** = $(r_1 * x_1^v) + FC$ so,

 $MgB_{max} = (\partial B/\partial x_1^v) = 0 \rightarrow (P^*f'(x_1) - r_1) = 0 \rightarrow (P^*f'(x_1)) = r_1$, as 1^{st} condition and, $f''(x_1^v) < 0$, as 2^{nd} condition, since relates to a maximum (Mg.Prod's decreasing phase)

3. Theoretical framework ...(3/3)... CO₂-EOR Theoretical Model

Cont... **Economic Dimension**

Modified from https://conspecte.com/Microeconomics/production-andproduction-costs.html

Methodology

- **ENVIRONMENTAL LIMITS Net Carbon Balance** 2a. Social cost Carbon emitted Carbon Carbon utilized Oil produced, refined. Private profit (CO₂-EOR) captured burned. 2b. Social benefit Carbon stored
- 1. CO₂-EOR dynamic LCA (*d*-LCA) for Neutral Carbon Balance
- Defined system boundary
- Dynamic reservoir model
- Four CO₂ IS (CGI, WAG, WCI and WAG+WCI)
- Four GS process (fract-refgrtn, membrane, Ryan–Holmes and w/o GS
- Operational results and Neutral Carbon Balance (NCB)

3.

Marginalist

approach

Eo, when

Malnc=MaCost

2. Integrating Externalities to economic analysis

Assessing social and environmental cost and benefits not normally accounted in private decision-making

- 4. Sustainability condition
- Necessary condition:
 Achieve economic optimum (Eo).
- Sufficient condition: Eo<=NCB

Scenarios and Sensitivity Analysis

Scenarios:

- Injection strategies: CGI, WAG, WCI and WAG+WCI
- Operative set up: EOR and EOR+ (plus stack storage)
- Oil price (\$/STB): Low (50), Expected (60) & High (72)
- CO₂ price (escalated, \$/CO₂Ton): 19-27, 23-46, 27-54 and 33-64 (lasts two are related to a Low and Med Carbon Social Cost)
- 45Q Tax incentive (\$/CO₂Ton): 12 years,
 (EOR -17 to 38- and Saline Storage -28 to 54-)
- O&M cost model escalated from ARI, 2006; King et all, 2011

Functional Unit:

• \$/STB

Economic Performance: EOR

			CGI	WAG
	А	ve Cost	112,603,587	76,685,859
	Ave	Benefit	10,073,469	43,707,501
		Benefit	8%	36%
A	Ave Standart Dev.		6,992,102	3,311,014
		%	69%	8%

Economic Performance: EOR (45Q)

	CGI	WAG
Ave Cost	112,603,587	76,685,859
Ave Benefit	37,546,434	58,514,521
Benefit	25%	43%
Ave Standart Dev.	6,992,102	3,311,014
%	19%	6%

Economic Performance: EOR+ (45Q)

		CGI	WAG
	Ave Cost	133,202,261	89,018,825
A	ve Benefit	64,088,518	63,504,358
	Benefit	32%	42%
Ave Sta	ndart Dev.	6,294,529	4,445,203
	%	10%	7 %

Economic Performance: EOR+

A	ve Cost	CGI 133,202,261	WAG 89,018,825
Ave	Benefit	9,518,539 7%	21,952,975 20 %
	Benefit	1%	20%
Ave Stand	Ave Standart Dev.		4,440,479
	%	66%	20%

Environmental Performance: Gate-to-Grave (EOR)

Environmental Performance: Gate-to-Grave (EOR+)

EOR 45Q Sustainability

EOR+ 45Q Sustainability

6. Conclusions

- 1. CGI and WAG ISs deliver CO₂-EOR sustainable operations in all cases that could be adopted as clear climate change mitigation options to accelerate CCUS commercial implementation.
- 2. EOR+ make a mayor impact in the sustainable conditions for CCUS
- 3. EOR+ makes WCI a sustainable operation fulfilling both necessary and sufficient conditions (Eo<=NCB)</p>
- 4. Oil price drives larger impact in the *Eo* than 45Q and CO2 cost
- 5. 45Q don't make substantial impact in the Eo but it has mayor impact in the operator's finances.
- 6. Assessing CO2-EOR economic performance through a marginalist theory approach is a novel, simple and yet comprehensive process of integrating environmental and socio-economic assessment, which can serve as a tool for decision-making in the meso level, leading to the sustainability in CCUS systems.

Next steps

- 1. Revision and adjustment of the cost model and results
- 2. Integrate a more accurate social benefits to the equation
- 3. Apply the methodology to other type of reservoir (carbonates and unconventionals)
- 4. Promote this methodology as a valid tool to assess the sustainability of other CCUS alternatives and potentially of other sectors.

Questions?

THANKS!

CONTACT INFO: Tel: +1 512-475-8831 ramon.gil@beg.utexas.edu www.beg.utexas.edu/gccc/

Economic functions

Income function:

- 1. TR = Oil price * STB + Tax Incentive * Vol. CO₂ storage
- 2. Mg_{INCOME} = Oil price + Tax Incentive (\$/CO2Ton) * CO_2 Utilization rate (CO_2 Ton/STB)
- 3. $Mg_{INCOME} = \$/STB (oil) + \$/STB (45Q)$

Cost function:

- 1. TC = CAPEX + OPEX
- 2. $Me_{VarC} = OPEX/STB = (CO_2 purchase + CO_2 rcycling + O&M)/STB$ Where,

OPEX = $b_0 + b_1 D$, where: $b_0 = 38.447 and $b_1 = 8.72$ \$/ft, D is the depth of the **EOR** (production and injection wells 10,000 ft (21) and **EOR**+ (injection wells 10,500 ft (2) (ARI, 2006; King et all, 2011)

3. $MgC_{VAR} = \frac{\$}{CO_2}Ton * (\frac{1}{Mg_{PROD}}) + \frac{\$}{Ton} * (\frac{1}{Mg_{CO2rec}}) + MgC_{O&M}$

Economic Optimum (*Eo*)

MaxB = 0 or MgR = MgC;

